Skip to main content

Advertisement

Log in

Medicinal biotechnology in the genus scutellaria

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Plant-based medicines have an important role in the lives of millions of people. The ancient knowledge of the use of plants as medicines has led to the discovery of many important western pharmaceuticals, and the popularity of whole plant preparations for a range of therapeutic applications is growing rapidly. However, there are many challenges in the production of plant-based medicines, many of which put both the consumer and the plant populations at risk. Modern biotechnology can be optimized to mass-produce plants of specific chemical composition for use as particular treatments and applications. In this review, we have used one of the most important medicinal plant genera, Scutellaria, as a model to assess the potential of applications of biotechnology for the improvement of medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Alan A, Zeng H, Assani A, Shi WL, McRae HE, Murch SJ, Saxena PK (2007) Assessment of genetic stability of the germplasm lines of medicinal plant Scutellaria baicalensis Georgi. (Huang-qin) in long-term, in vitro maintained cultures. Plant Cell Rep Online DOI 10.1007/s00299-007-0332-9

  • Aonuma S, Miura T, Tarutani M (1957) Effects of Coptis, Scutellaria, Rhubarb and Bupleurum on the serum cholesterol and phospholipid. Yakugaku Zasshi 77: 1303–1306

    CAS  Google Scholar 

  • Bernath J (1986) Production ecology of secondary plant products. Herbs, spices and medicinal plants 1: 185–234

    Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends in Biotechnology 23:4 180–185

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Murch SJ, O’Brien R, Saxena PK (2006) Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chroma A 1134: 333–337

    Google Scholar 

  • Catling PM, Porebski S (1998) Rare wild plants of potential or current economic importance in Canada—a list of priorities. Can J Plant Sci 78:4 653–658

    Google Scholar 

  • Chang WH, Chem CH, Lu FJ (2002) Different effects of baicalein, baicalin and wogonin on mitochondrial function, glutathione content and cell cycle progression in human hepatoma cell lines. Planta Medica 68: 128–132

    Article  PubMed  CAS  Google Scholar 

  • Chen GF, Huo YS, Tan DX, Liang Z, Zhang W, Zhang Y (2003) Melatonin in Chinese medicinal herbs. Life Sci 73: 19–26

    Article  PubMed  CAS  Google Scholar 

  • de Boer JG, Quiney B, Walter PB, Thomas C, Hodgson K, Murch SJ, Saxena PK (2005) Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis. Mut Res 578: 15–22.

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edition. New York: Wiley

    Google Scholar 

  • Edwards R (2004) No remedy in sight for herbal ransack. New Sci 181: 10–11

    Google Scholar 

  • Farnsworth NR (1998) Screening plant for new medicines. In: Wilson, E.O. (ed.) Biodiversity. Washington, DC: National Academy Press 83–97

    Google Scholar 

  • Gafner SC, Bergeron LL, Batcha J, Reich J, Arnason JT, Burdette JE, Pezzuto JM, Angerhofer CK (2003) Inhibition of [3H]-LSD binding to 5-HT7 receptors by flavonoids from Scutellaria lateriflora. J Nat Prod 66: 535–537

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Sakurai K, Katoh M, Chen J, Ogiso T (1996) Inhibition of microsomal lipid peroxidation by baicalein: A possible formation of an iron-baicalein complex. Biochem Mol Biol Int 39: 215–225

    CAS  Google Scholar 

  • Gao SJ, Chen BJ, Zhu DN (2002) In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tiss Org 70:3 289–293

    Article  CAS  Google Scholar 

  • Goh D, Lee YH, Ong ES (2005) Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Food Ag Chem 53: 8197–8204

    Article  CAS  Google Scholar 

  • Greenwald A (1998) Herbal Healing. Time Magazine November 23, 48–58

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell Rep 14: 1437–1440

    Article  CAS  Google Scholar 

  • Hattori S (1930) Spectrography of the flavone series. III. The constitution of wogonin. Acta Phytochim 5: 99–116

    CAS  Google Scholar 

  • Hirai Y, Takase H, Kobayashi H, Yamamoto M, Fujioka N, Kohda H, Yamasaki K, Yasuhara T, Nakajima T (1983) Screening test for anti-inflammatory crude drugs bases on inhibition effect of histamine release from mast cells. Shoyakugaku Zasshi 37: 347–380

    Google Scholar 

  • Hirotani M, Kuroda R, Suzuki H, Yoshikawa T (2000) Cloning and expression of UDP-glucose: flavonoid 7-0-glucosytransferase from hairy root culturesof Scutellaria baicalensis. Planta 210:6 1006–1013

    PubMed  CAS  Google Scholar 

  • Hong H, Liu GQ (2004) Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sci 74: 2959–2973

    Article  PubMed  CAS  Google Scholar 

  • Horvath CR, Martos PA, Saxena PK (2005) Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant Huang-qin (Scutellaria baicalensis Georgi.) using high-performance liquid chromatography with diode array and mass spectrometric detection. J Chromatogr A 1062: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TC, Lu X, Chea J, Wu JM (2002) Prevention and management of prostate cancer using PC-SPES: a scientific perspective. J Nutr 132: S3153–S3517

    Google Scholar 

  • Hwang SJ (2006) Baicalin production in transformed hairy root clones of Scutellaria baicalensis. Biotechnol Bioproc E 11:2 105–109

    Article  CAS  Google Scholar 

  • Joshee N, Mentreddy SR, Yadav AK (2007) Mycorrhizal fungi and growth and development of microproagated Scutellaria integrifolia plants. Ind Crops Prod 25: 169–177

  • Kimura Y, Kubo M, Tani T, Arichi S, Ohiminami H, Okuda H (1981a) Studies on Scutellariae Radix III. Effect on lipid metabolism in serum, liver, and fat cell of rat. Chem Pharm Bull 29: 2308–2312

    CAS  Google Scholar 

  • Kimura Y, Kubo M, Tani T, Arichi S, Okuda H (1981b) Studies on Scutellariae Radix IV. Effects on lipid peroxidation in rat liver. Chem Pharm Bull 29: 2610–2617

    Google Scholar 

  • Kimura Y, Okuda H, Tani H, Arichi S (1982) Studies on Scutellaria Radix V. Effects of flavone compounds on lipid peroxidation in rat liver. Chem Pharm Bull 30: 1792–1795

    PubMed  CAS  Google Scholar 

  • Kimura Y, Okuda H, Arichi S (1985) Studies on Scutellaria Radix. Effects of various flavonoids on arachidonate metabolism in leukocytes. Planta 47: 132–136

    Google Scholar 

  • Koda A, Nagai H, Wada H (1970a) The pharmacological action of baicalin and baicalein (I). Effects of active and anaphylactic reactions. Folia Pharmacol Jpn 66: 194–213

    CAS  Google Scholar 

  • Koda A, Nagai H, Wada H (1970b) The pharmacological action of baicalin and baicalein (II). Effects of active and anaphylactic reactions. Folia Pharmacol Jpn 66: 237–247

    CAS  Google Scholar 

  • Koda A, Nagai H, Yoshida Y, Ron Hon C (1970c) The pharmacological action of baicalin and baicalein (III). Effect upon experimental asthma. Folia Pharmacol Jpn 66: 471–486

    CAS  Google Scholar 

  • Koda A, Nishi K, Nagai H, Matsuura N, Tsutiya H (1970d) Anti-allergic actions of crude drugs. Folia Pharmacol Jpn 66: 366–378

    CAS  Google Scholar 

  • Koda A (1973) Pharmacological action of Scutellariae radix, principally baicalin and baicalein. Metabol Dis (J Wakanyaku) 10: 268–277

    Google Scholar 

  • Koda A, Nishi K, Nagai H, Matsuura N, Tsutiya H (1982) Anti-allergic actions of crude drugs and blended Chinese traditional medicines. Effects on Type I and Type IV. Folia Pharmacol Jpn 80: 31–41

    CAS  Google Scholar 

  • Koda A (1987) The relationship between crude drugs and allergic reaction. In: 34 Annual Meeting of Japanese Society for Pharmacogniscy, Osaka, October pp.9–12

  • Kovacs D, Kuzokina IN, Szoke E, Kursinzki L (2004) HPLC determination of flavonoids in hairy-root cultures of Scutellaria baicalensis Georgi. Chromotographia 60: Suppl. Pp. S81–S85

    CAS  Google Scholar 

  • Kubo M, Kimura Y, Odani T, Tani T, Namba T (1981) Studies on Scutellariae radix. Planta 43: 194–201

    Article  CAS  Google Scholar 

  • Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Higashino M, Tani T, Namba K, Arichi S (1984) Studies on Scutellariae radix VII. Anti-arthritic and anti-inflammatory action of methanolic extract and flavonoid components from Scutellariae radix. Chem Pharm Bull 32: 2724–2729

    PubMed  CAS  Google Scholar 

  • Kubo M, Matsuda H, Tani T, Arichi S, Kimura Y (1985) Studies in Scutellariae radix XII. Anti-thrombic action of various flavonoids from Scutellariae Radix. Chem Pharm Bull 33: 2411–2415

    PubMed  CAS  Google Scholar 

  • Kumazaki H (1958) On the pharmacological action of the Scutellaria, a crude drug. Gifu Pharm Univ Bull 6: 94–111, 153–163, 164–168, 352–359, 372–376

    Google Scholar 

  • Kuzovkina IN, Goseva AV, Alterman IE, Karnachuk RA (2001) Flavonoid production in transformed Scutellaria baicalensis roots and ways of its regulation. Russ J Plant Physiol 48:4 448–452

    Article  CAS  Google Scholar 

  • Kuzovkina IN, Guseva AV, Kovacs D, Szoke E, Vdovitchenko I (2005) Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate. Russ J Plant Physiol 52:1 77–82

    Article  CAS  Google Scholar 

  • Lambert J, Srivastava J, Vietmeyer N (1997) Medicinal plants: rescuing a global heritage. World Bank Technical Paper No. 355. The World Bank, Washington, D.C.

  • Lauglin JC, Munro D (1982) The effect of fungal colonization on the morphine production of poppy Papaver somniferum L. capsules. Journal of Agricultural Sciences 98: 679–686

    Article  Google Scholar 

  • Leaman D (2001) Conservation, trade, sustainability and exploration of medicinal plant species. Pages 1–15 in Development of Plant–Based Medicines: Conservation, Efficacy and Safety. Editor: P.K. Saxena. Kluwer Academic Publishers

  • Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ Choi WS, Suk K (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB 17:11

    Google Scholar 

  • Li BQ, Fu T, Yan YD, Baylor NW, Ruscetti FW, Kung H (1993) Inhibition of HIV infection by baicalin—a flavonoid compound purified from Chinese herbal medicine. Cell Mol Biol Res 339: 119–124

    Google Scholar 

  • Li H, Murch SJ, Saxena PK (2000) Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls, and stem segments of Huang-qin. Plant Cell Tiss Org 62: 169–173

    Article  CAS  Google Scholar 

  • Li FQ, Wang T, Pei Z, Liu B, Hong JS (2004) Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J Neural Trans 112: 331–347

    Article  CAS  Google Scholar 

  • Lim BO (2003) Effects of wogonin, wogonoside, and 3,5,7,2′,6′-pentahydroxyflavone on chemical mediator production in peritoneal exudate cells and immunoglobulin E of rat mesenteric lymph node lymphocytes. J Ethnopharm 84: 23–29

    Article  CAS  Google Scholar 

  • Liu CZ, Murch SJ, Jain JC, Saxena PK (2004) Goldenseal (Hydrastis canadaensis L.): In vitro regeneration for germplasm conservation and elimination of heavy metal contamination. In Vitro Cell Div Biol-Plant 40: 75–79

  • Liu H, Yang X, Tang R, Liu J, Xu H (2005) Effect of scutellarin on nitric oxide production in early stages of neuron damage induced by hydrogen peroxide. Pharm Res 51: 205–210

    Article  CAS  Google Scholar 

  • Malikov VM, Yuledashev MP (2002) Phenolic compounds of plants of the Scutellaria L. genus: distribution, structure, and properties. Chem Nat Comp 38:4 358–406

    Article  CAS  Google Scholar 

  • Matsuzaki Y, Kurokawa N, Terai S, Matsumura Y, Kobayashi N, Okita K (1996) Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn J Cancer Res 87:2 170–177

    PubMed  CAS  Google Scholar 

  • Morimoto S, Harioka T, Shoyama Y (1995) Purification and characterization of flavone-specific β-glucuronidase from callus cultures of Scutellaria baicalensis Georgi. Planta 195: 535–540

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15: 473–492

    Article  CAS  Google Scholar 

  • Murch SJ, Simmons CB, Saxena PK (1997) Melatonin in feverfew and other medical plants. Lancet 350: 1598–1599

    Article  PubMed  CAS  Google Scholar 

  • Murch SJ, Krishnaraj S, Saxena PK (2000) Phytopharmaceuticals: mass-production, standardization, and conservation. Sci Rev Alt Med 4: 33–37

    Google Scholar 

  • Murch SJ, Rupasinghe HPV, Goodenowe D, Saxena PK (2004) A metobolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi.) genotypes discovery of novel compounds. Plant Cell Rep 23: 419–425

    Article  PubMed  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) St John’s wort (Hypericum perforatum L.): Challenges and strategies for production of chemically consistent plants Can J Plant Sci 86: 765–771

    Google Scholar 

  • Nan JX, Park EJ, Kim YC, Ko G, Sohn DH (2002) Scutellaria baicalensis inhibits liver fibrosis induced by bile duct litigation or carbon tetrachloride in rats. J Pharm Pharmacol 54: 555–563

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa K, Ishimaru K (1997) Flavonoids in root cultures of Scutellaria baicalensis. J Plant Physiol 151:5 633–636

    CAS  Google Scholar 

  • Nishikawa K, Furukawa H, Fujioka T, Fujii H, Mihashi K, Shimomura K, Ishimaru K (1999) Flavone production in transformed root cultures of Scutellaria baicalensis Georgi. Phytochem 52:5 885–890

    Article  CAS  Google Scholar 

  • Pouzet B (2002) SB-258741: a 5-HT7 receptor antagonist of potential clinical interest. CNS Drug Rev 8: 90–100

    Article  PubMed  CAS  Google Scholar 

  • Schippmann U (2001) Medicinal plants significant trade study. CITES Project S-109 Plants committee document PC9 9.1.3

  • Seigler DS (1996) Chemistry and mechanisms of allelopathic interactions. Agron J 88: 876–885

    Article  CAS  Google Scholar 

  • Sekiya K, Okuda H (1982) Selective-inhibition of platelet lipoxygenase by baicalein. Biochem Biophys Res Com 105:3 1090–1095

    Article  PubMed  CAS  Google Scholar 

  • Seo WT, Park YH, Choe TB (1993) Identification and production of flavonoids in a cell-suspension culture of Scutellaria baicalensis Georgi. Plant Cell Rep 12:7–8 414–417

    CAS  Google Scholar 

  • Seo WT, Park YH, Choe TB (1996) An optimized of flavonoid production from the suspension culture of Scutellaria baicalensis Georgi. Cells. J Microbiol Biotechnol 6:5 347–351

    CAS  Google Scholar 

  • Slifman NR, Obermeyer WR, Musser SM, Correll WA, Cichowicz SM, Betz JM, Love LA (1998) Contamination of botanical dietary supplements with Digitalis lantana. N Engl J Med 339: 806–811

    Article  PubMed  CAS  Google Scholar 

  • Srivastava J, Lambert J, Vietmeyer N (1996) Medicinal plants: an expanding role in development. World Bank Technical Paper 320 The World Bank, Washington D.C.

  • Stojakowska A, Malarz J, Kohlmunzer S (1999) Micropropagation of Scutellaria baicalensis Georgi. Acta Soc Bot Pol 68:2 103–107

    Google Scholar 

  • Stojakowska A, Kisiel W (1998) Secondary metabolites from a callus culture of Scutellaria colomnae. Fitoterapia 70:3 324–325

    Article  Google Scholar 

  • Tai MC, Tsang SY, Chang LYF, Xue H (2005) Therapeutic potential of Wogonin: A naturally occurring flavonoid. CNS Drug Rev 11:2 141–150

    Article  PubMed  CAS  Google Scholar 

  • Tomimori T, Miyaichi Y, Kizu H (1982) On the flavonoid constituents of Scutellaria baicalensis Georgi. I. Yakugaku Zasshi 104: 338–341

    Google Scholar 

  • Tomimori T, Miyaichi Y, Imoto Y, Kizu H, Tanabe Y (1983) Studies on the constituents of Scutellaria species. II. On the flavonoid constituents of the root of Scutellaria baicalensis Georgi. (2) Yakugaku Zasshi 103: 607–611

    CAS  Google Scholar 

  • Tomimori T, Miyaichi Y, Imoto Y, Kizu H, Namba T (1986a) Studies on Nepalese crude drugs. VI. On the flavonoid constituents of the root of Scutellaria discolor Colebr. (2) Chem Pharm Bull 34: 406–408

    CAS  Google Scholar 

  • Tomimori T, Miyaichi Y, Jin H, Toyofuku S, Yamamoto M (1986b) Studies on the constituents of Scutellaria species. VII. Seasonal variations of growth and flavonoid content in the root of Scutellaria baicalensis Georgi. Shoyakugaku Zasshi 40: 381–389

    CAS  Google Scholar 

  • Uhring J (1982) In vitro propagation of Scutellaria costaricana. Hortsci 17:3 533

    Google Scholar 

  • Vines G (2004) Herbal harvests with a future: towards sustainable sources for medicinal plants. Plantlife International. http://www.plantlife.org.uk.

  • Watanabe H, Kobayashi T, Meibou T, Sekiguchi Y, Uchida K, Aoki T, Cyong JC (2002) Effects of Kampo herbal medicine on plasma melatonin concentration in patients. Am J Chi Med 30: 65–71

    Article  PubMed  Google Scholar 

  • Yamahara J, Yamada T, Nakanishi H, Sawada T, Fujimura H (1981) Inhibitory effect of crude drugs on the denaturation of human γ-globurin induced by heat and Cu2+. Shoyakugaku Zasshi 35: 103–107

    CAS  Google Scholar 

  • Yamamoto H, Chatani N, Kitayama Z, Tomimori T (1986a) Flavonoid production in Scutellaria baicalensis callus cultures. Plant Cell Tiss Org 5: 219–222

    Article  CAS  Google Scholar 

  • Yamamoto H, Chantani N, Watanabe K, Tomimori T (1986b) Effect of carbon sources on the growth and flavonoid formation of Scutellaria baicalensis stem callus culture. Shoyakugaku Zasshi 40: 19–25

    CAS  Google Scholar 

  • Yamamoto H, Chantani N, Watanabe K, Tomimori T (1986c) Effect of culture period on the growth and flavonoid formation of Scutellaria baicalensis stem callus culture. Shoyakugaku Zasshi 40: 26–32

    CAS  Google Scholar 

  • Yamamoto H, Chantani N, Watanabe K, Tomimori T (1986d) Effects of 5% maltose and plant growth regulators on the callus growth and flavonoid formation of some Scutellaria baicalensis stem callus lines. Shoyagaku Zasshi 40: 33–39

    CAS  Google Scholar 

  • Yamamoto H, Watanabe K, Tomimori T (1987) Effects of various growth inhibitors on the callus growth and flavonoid production of Scutellaria baicalensis callus cultures. Shoyagaku Zasshi 41: 97–101

    Google Scholar 

  • Yamamoto H, Sano T, Tomimori T (1989a) Growth and flavonoid formation of Scutellaria baicalensis callus culture in liquid medium. Shoyakugaku Zasshi 43: 87–92

    CAS  Google Scholar 

  • Yamamoto H, Sano T, Takeuchi S, Tanaka M, Tomimori T (1989b) Flavonoid production by two-stage culture and differentiated roots of Scutellaria baicalensis callus in liquid medium. Shoyagaku Zasshi 43: 188–191

    CAS  Google Scholar 

  • Yamamoto H (1991) Scutellaria baicalensis Georgi.: In vitro culture and the production of flavonoids. In: Bajaj, Y.P.S. (ed.) Medicinal and Aromatic Plants, Springer-Verlag Berlin. 398–418

    Google Scholar 

  • Zhao Y, Li H, Gao Z, Gong Y, Xu H (2006) Effects of flavonoids extracted from Scutellaria baicalensis Georgi. On hemin-nitrite-H202 induced liver injury. Eur J Pharmacol 536: 192–199

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Hirotani M, Yoshikawa T, Furuya T (1997) Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochem 44:1 83–87

    Article  CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV, de Boer JG, Glickman BW, Saxena PK (2004) Optimized system for biomass production and evaluation of chemo-preventive properties of Scutellaria baicalensis Georgi. Plant Sci 167: 439–446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Murch.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, I.B., Saxena, P.K. & Murch, S.J. Medicinal biotechnology in the genus scutellaria . In Vitro Cell.Dev.Biol.-Plant 43, 318–327 (2007). https://doi.org/10.1007/s11627-007-9055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9055-4

Keywords

Navigation