Skip to main content

Advertisement

Log in

Characteristics of mesenchymal stem cells and their exosomes derived from giant panda (Ailuropoda melanoleuca) endometrium

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Conservation of genetic resources is an important way to protect endangered species. At present, mesenchymal stem cells (MSCs) have been isolated from the bone marrow and umbilical cords of giant pandas. However, the types and quantities of preserved cell resources were rare and limited, and none of MSCs was derived from female reproductive organs. Here, we first isolated MSCs from the endometrium of giant panda. These cells showed fibroblast morphology and expressed Sox2, Klf4, Thy1, CD73, CD105, CD44, CD49f, and CD105. Endometrium mesenchymal stem cells (eMSCs) of giant panda could induce differentiation into three germ layers in vitro. RNA-seq analysis showed that 833 genes were upregulated and 716 genes were downregulated in eMSCs compared with skin fibroblast cells. The results of GO and the KEGG analysis of differentially expressed genes (DEGs) were mainly focused on transporter activity, signal transducer activity, pathways regulating pluripotency of stem cells, MAPK signaling pathway, and PI3K-Akt signaling pathway. The genes PLCG2, FRK, JAK3, LYN, PIK3CB, JAK2, CBLB, and MET were identified as hub genes by PPI network analysis. In addition, the exosomes of eMSCs were also isolated and identified. The average diameter of exosomes was 74.26 ± 13.75 nm and highly expressed TSG101 and CD9 but did not express CALNEXIN. A total of 277 miRNAs were detected in the exosomes; the highest expression of miRNA was the has-miR-21-5p. A total of 14461 target genes of the whole miRNAs were predicted and proceeded with functional analysis. In conclusion, we successfully isolated and characterized the giant panda eMSCs and their exosomes, and analyzed their functions through bioinformatics techniques. It not only enriched the conservation types of giant panda cell resources and promoted the protection of genetic diversity, but also laid a foundation for the application of eMSCs and exosomes in the disease treatment of giant pandas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • An JH, Li FP, He P, Chen JS, Cai ZG, Liu SR, Yue CJ, Liu YL, Hou R (2020) Characteristics of mesenchymal stem cells isolated from the bone marrow of red pandas. Zoology (Jena) 140:125775

    Article  PubMed  Google Scholar 

  • Bauer KM, Round JL, O'Connell RM (2022) No small matter: emerging roles for exosomal miRNAs in the immune system. FEBS J 289:4021–4037

    Article  CAS  PubMed  Google Scholar 

  • Chan RW, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750

    Article  CAS  PubMed  Google Scholar 

  • Comizzoli P (2015) Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J Androl 17:640–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Comizzoli PJAR (2017) Biobanking and fertility preservation for rare and endangered species. Anim Reprod (AR) 14:30–33

    Article  Google Scholar 

  • Cordeiro MR, Carvalhos CA, Figueiredo-Dias M (2022) The emerging role of menstrual-blood-derived stem cells in endometriosis. Biomedicines 11

  • Cousins FL, Filby CE, Gargett CE (2021) Endometrial stem/progenitor cells-their role in endometrial repair and regeneration. Front Reprod Health 3:811537

    Article  PubMed  Google Scholar 

  • De Schauwer C, Meyer E, Van de Walle GR, Van Soom A (2011) Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 75:1431–1443

    Article  PubMed  Google Scholar 

  • Ding C, Zou Q, Wang F, Wu H, Chen R, Lv J, Ling M, Sun J, Wang W, Li H, Huang B (2018) Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Res Ther 9:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Domnina A, Novikova P, Obidina J, Fridlyanskaya I, Alekseenko L, Kozhukharova I, Lyublinskaya O, Zenin V, Nikolsky N (2018) Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res Ther 9:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominina AP, Fridliandskaia II, Zemel'ko VI, Pugovkina NA, Kovaleva ZV, Zenin VV, Grinchuk TM, Nikol'skii NN (2013) Mesenchymal stem cells of human endometrium do not undergo spontaneous transformation during long-term cultivation. Tsitologiia 55:69–74

    CAS  PubMed  Google Scholar 

  • Gong M, Bi Y, Jiang W, Zhang Y, Chen L, Hou N, Chen J, Li T (2013) Retinoic acid receptor beta mediates all-trans retinoic acid facilitation of mesenchymal stem cells neuronal differentiation. Int J Biochem Cell Biol 45:866–875

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Yu Y, Hu S, Chen Y, Shen Z (2020) The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis 11:349

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurung S, Deane JA, Darzi S, Werkmeister JA, Gargett CE (2018) In vivo survival of human endometrial mesenchymal stem cells transplanted under the kidney capsule of immunocompromised mice. Stem Cells Dev 27:35–43

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Zywitza V, Naitou Y, Hamazaki N, Goeritz F, Hermes R, Holtze S, Lazzari G, Galli C, Stejskal J, Diecke S, Hildebrandt TB, Hayashi K (2022) Robust induction of primordial germ cells of white rhinoceros on the brink of extinction. Sci Adv 8:eabp9683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Sidhu K (2008) Recent advances in the derivation of germ cells from the embryonic stem cells. Stem Cells Dev 17:399–411

    Article  PubMed  Google Scholar 

  • Jinchu HU, Zhang Z, Wei FJATS (2011) History,current situation and prospects on nature reserves for giant pandas (Ailuropoda melanoleuca) in China. Acta Theriol Sin 31:10–14

    Google Scholar 

  • Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367

  • Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran SD (2021) Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci 22

  • Kumar K, Das K, Madhusoodan AP et al (2018) Rat bone marrow derived mesenchymal stem cells differentiate to germ cell like cells[J]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/418962

  • Lai D, Guo Y, Zhang Q, Chen Y, Xiang C (2016) Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells. Acta Biochim Biophys Sin (Shanghai) 48:998–1005

    Article  CAS  PubMed  Google Scholar 

  • Lai D, Wang F, Yao X, Zhang Q, Wu X, Xiang C (2015a) Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med 13:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai RC, Yeo RW, Lim SK (2015b) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88

    Article  CAS  PubMed  Google Scholar 

  • Lenero C, Kaplan LD, Best TM, Kouroupis D (2022) CD146+ endometrial-derived mesenchymal stem/stromal cell subpopulation possesses exosomal secretomes with strong immunomodulatory miRNA attributes. Cells 11

  • Letouzey V, Tan KS, Deane JA, Ulrich D, Gurung S, Ong YR, Gargett CE (2015) Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium. PLoS One 10:e0127531

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen J, Feng T, Hou R, Cai Z, Wang D, Zhang M, Li Y, Chen Y, An J (2022) The establishment of giant panda (Ailuropoda melanoleuca) fibroblast cell line. In Vitro Cell Dev Biol Anim 58:194–198

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li F, Cai Z, Wang D, Hou R, Zhang H, Zhang M, Yie S, Wu K, Zeng C, An J (2021) Isolation and characterization of mesenchymal stem cells from umbilical cord of giant panda. Tissue Cell 71:101518

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu Y, Yie S, Lan J, Pi J, Zhang Z, Huang H, Cai Z, Zhang M, Cai K, Wang H, Hou R (2013) Characteristics of mesenchymal stem cells isolated from bone marrow of giant panda. Stem Cells Dev 22:2394–2401

    Article  CAS  PubMed  Google Scholar 

  • Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913

    Article  PubMed  Google Scholar 

  • Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–635

    Article  CAS  PubMed  Google Scholar 

  • Mendt M, Rezvani K, Shpall E (2019) Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 54:789–792

    Article  PubMed  Google Scholar 

  • Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thebaud B, Riordan NH (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadian M, Shamsasenjan K, Lotfi Nezhad P, Talebi M, Jahedi M, Nickkhah H, Minayi N, Movassagh Pour A (2013) Mesenchymal stem cells: new aspect in cell-based regenerative therapy. Adv Pharm Bull 3:433–437

    PubMed  PubMed Central  Google Scholar 

  • Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 17:303–311

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Prianishnikov VA (1978) On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception 18:213–223

    Article  CAS  PubMed  Google Scholar 

  • Pritchard DJ, Fa JE, Oldfield S, Harrop SRJO (2012) Bring the captive closer to the wild: redefining the role of ex situ conservation. Oryx 46:18–23

    Article  Google Scholar 

  • Razeghian E, Margiana R, Chupradit S, Bokov DO, Abdelbasset WK, Marofi F, Shariatzadeh S, Tosan F, Jarahian M (2021) Mesenchymal stem/stromal cells as a vehicle for cytokine delivery: an emerging approach for tumor immunotherapy. Front Med (Lausanne) 8:721174

    Article  PubMed  Google Scholar 

  • Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN (2018) Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol 9:2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhim HC, Jeon OH, Han SB, Bae JH, Suh DW, Jang KM (2021) Mesenchymal stem cells for enhancing biological healing after meniscal injuries. World J Stem Cells 13:1005–1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehinejad P, Moshrefi M, Eslaminejad T (2020) An overview on mesenchymal stem cells derived from extraembryonic tissues: supplement sources and isolation methods. Stem Cells Cloning 13:57–65

    PubMed  PubMed Central  Google Scholar 

  • Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y (2018) Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 14:493–507

    Article  CAS  PubMed  Google Scholar 

  • Su K, Edwards SL, Tan KS, White JF, Kandel S, Ramshaw JAM, Gargett CE, Werkmeister JA (2014) Induction of endometrial mesenchymal stem cells into tissue-forming cells suitable for fascial repair. Acta Biomater 10:5012–5020

    Article  CAS  PubMed  Google Scholar 

  • Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ (2015) Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 16:10934–10951

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Jiang Z, Chen Y, Shang D, Miao P, Gao J (2021) MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling. Bioengineered 12:12891–12904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taheri MM, Saki G, Nikbakht R, Eftekhari ARM (2021) Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol Int 45:127–139

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Xia D, Ying X (2020) miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion. Int J Stem Cells 13:414–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Zhou Y, Li HJ (2021) Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res Ther 12:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor HS (2004) Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292:81–85

    Article  CAS  PubMed  Google Scholar 

  • Wang DH, Chen JS, Hou R, Li Y, An JH, He P, Cai ZG, Liang XH, Liu YL (2022a) Comparison of transcriptome profiles of mesenchymal stem cells derived from umbilical cord and bone marrow of giant panda (Ailuropoda melanoleuca). Gene 845:146854

    Article  CAS  PubMed  Google Scholar 

  • Wang DH, Liu YL, Cai ZG, An JH, Lan JC, Chen JS, Li Y, He L, Zhang Y, He P, Zhang ZH, Yie SM, Hou R (2020) Effects of extender type on the quality of post-thaw giant panda (Ailuropoda melanoleuca) semen. Cryobiology 94:95–99

    Article  CAS  PubMed  Google Scholar 

  • Wang DH, Wu XM, Chen JS, Cai ZG, An JH, Zhang MY, Li Y, Li FP, Hou R, Liu YL (2022b) Isolation and characterization mesenchymal stem cells from red panda (Ailurus fulgens styani) endometrium. Conserv Physiol 10:coac004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang J, Wang Y, Ma R, Zhang S, Zheng J, Xue W, Ding X (2023) Bone marrow mesenchymal stem cells-derived miR-21-5p protects grafted islets against apoptosis by targeting PDCD4. Stem Cells 41:169–183

    Article  PubMed  Google Scholar 

  • Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, Zhao J, Wang L, Wang Y, Zhong Z, Ni C, Li Q, Xiang C, Zhang L, Wu R, Zhu W, Yu H, Hu X, Wang J (2017) Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21. Stem Cells Transl Med 6:209–222

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Fang J, Cai S, Lv C, Zhang S, Hua J (2016) Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells. Cell Prolif 49:503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Showiheen SAA, Sun AR, Crawford R, Xiao Y, Mao X, Prasadam I (2019) Exosomes extraction and identification. Methods Mol Biol 2054:81–91

    Article  CAS  PubMed  Google Scholar 

  • Yijiao C, Donghui W, Yuliang L, Feiping L, Ping H, Zhigang C, Hao Z, Min C, Rong H, Junhui A (2020) The isolation and culture of giant panda (Ailuropoda melanoleuca) breast milk cells. In Vitro Cell Dev Biol Anim 56:430–434

    Article  PubMed  Google Scholar 

  • You M, Ai Z, Zeng J, Fu Y, Zhang L, Wu X (2022) Bone mesenchymal stem cells (BMSCs)-derived exosomal microRNA-21-5p regulates Kruppel-like factor 3 (KLF3) to promote osteoblast proliferation in vitro. Bioengineered 13:11933–11944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Hao JX, Liu BW, Ouyang YC, Guo JN, Dong MZ, Wang ZB, Gao F, Yao YQ (2023) Supplementation of mitochondria from endometrial mesenchymal stem cells improves oocyte quality in aged mice. Cell Prolif 56:e13372

    Article  CAS  PubMed  Google Scholar 

  • Zolfaghar M, Mirzaeian L, Beiki B, Naji T, Moini A, Eftekhari-Yazdi P, Akbarinejad V, Vernengo AJ, Fathi R (2020) Wharton's jelly derived mesenchymal stem cells differentiate into oocyte like cells in vitro by follicular fluid and cumulus cells conditioned medium. Heliyon 6:e04992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Sichuan Province (2022NSFSC1608 and 2023NSFSC0170), Chengdu Giant Panda Breeding Research Foundation (CPF2017–16), and Chengdu Research Base of Giant Panda Breeding (2022CPB-B11).

Author information

Authors and Affiliations

Authors

Contributions

Yu-Liang Liu: conceptualization, methodology. Jia-Song Chen: visualization, investigation. Jun-Hui An: formal analysis. Zhi-Gang Cai: formal analysis. Jing-Chao Lan: visualization, investigation. Yuan Li: investigation. Xiang-Wei Kong: investigation. Ming-Yue Zhang: formal analysis. Rong Hou: project administration. Dong-Hui Wang: conceptualization, methodology, writing-original draft, writing-review and editing. All the authors have contributed to this study and are aware of submission.

Corresponding author

Correspondence to Dong-Hui Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Lay summary

We for the first time successfully isolated and characterized the giant panda endometrial mesenchymal stem cells (eMSCs) and their exosomes, and analyzed their functions through bioinformatics techniques. It not only enriched the conservation types of giant panda cell resources but also laid a foundation for disease treatment of giant pandas.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YL., Chen, JS., An, JH. et al. Characteristics of mesenchymal stem cells and their exosomes derived from giant panda (Ailuropoda melanoleuca) endometrium. In Vitro Cell.Dev.Biol.-Animal 59, 550–563 (2023). https://doi.org/10.1007/s11626-023-00802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-023-00802-1

Keywords

Navigation