Skip to main content
Log in

S100A12 inhibits fibroblast migration via the receptor for advanced glycation end products and p38 MAPK signaling

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The migration of lung fibroblasts plays a pivotal role in wound repair and fibrotic processes in the lung. Although the receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of lung diseases, its role in lung fibroblast migration is unclear. The current study examined the effect of three different RAGE ligands, namely, high mobility group box 1 (HMGB1), S100A12, and N-epsilon-(carboxymethyl) lysine (CML), on human fibronectin-directed human fetal lung fibroblast (HFL-1) migration. HMGB1 augmented, whereas S100A12 inhibited, HFL-1 migration in a concentration-dependent manner. CML did not affect HFL-1 migration. The effect of HMGB1 was not through RAGE. However, the effect of S100A12 was mediated by RAGE, but not Toll-like receptor 4. S100A12 did not exert a chemoattractant effect, but inhibited HFL-1 chemotaxis and/or chemokinesis. Moreover, S100A12 mediated HFL-1 migration through p38 mitogen-activated protein kinase (MAPK) but not through nuclear factor-kappa B, protein kinase A, phosphatase and tensin homolog deleted on chromosome 10, or cyclooxygenase. In addition, western blot analysis showed that S100A12 augmented p38 MAPK activity in the presence of human fibronectin. In conclusion, S100A12 inhibits lung fibroblast migration via RAGE-p38 MAPK signaling. This pathway could represent a therapeutic target for pulmonary conditions characterized by abnormal tissue repair and remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 83:876–886

    Article  CAS  Google Scholar 

  • Buckley ST, Ehrhardt C (2010) The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol 2010:917108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HC (2005) Boyden chamber assay. Methods Mol Biol 294:15–22

    PubMed  Google Scholar 

  • Chen L, Wang T, Guo L, Shen Y, Yang T, Wan C, Liao Z, Xu D, Wen F (2014) Overexpression of RAGE contributes to cigarette smoke-induced nitric oxide generation in COPD. Lung 192:267–275

    Article  CAS  PubMed  Google Scholar 

  • Chung KF (2011) p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 139:1470–1479

    Article  CAS  PubMed  Google Scholar 

  • Cockayne DA, Cheng DT, Waschki B, Sridhar S, Ravindran P, Hilton H, Kourteva G, Bitter H, Pillai SG, Visvanathan S, Muller KC, Holz O, Magnussen H, Watz H, Fine JS (2012) Systemic biomarkers of neutrophilic inflammation, tissue injury and repair in COPD patients with differing levels of disease severity. PLoS One 7:e38629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decaestecker C, Debeir O, Van Ham P, Kiss R (2007) Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med Res Rev 27:149–176

    Article  CAS  PubMed  Google Scholar 

  • Ferhani N, Letuve S, Kozhich A, Thibaudeau O, Grandsaigne M, Maret M, Dombret MC, Sims GP, Kolbeck R, Coyle AJ, Aubier M, Pretolani M (2010) Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181:917–927

    Article  CAS  PubMed  Google Scholar 

  • Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  CAS  PubMed  Google Scholar 

  • Ikari J, Michalski JM, Iwasawa S, Gunji Y, Nogel S, Park JH, Nelson AJ, Farid M, Wang X, Schulte N, Basma H, Toews ML, Feghali-Bostwick C, Tenor H, Liu X, Rennard SI (2013) Phosphodiesterase-4 inhibition augments human lung fibroblast vascular endothelial growth factor production induced by prostaglandin E2. Am J Respir Cell Mol Biol 49:571–581

    Article  CAS  PubMed  Google Scholar 

  • Kessel C, Holzinger D, Foell D (2013) Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin Immunol 147:229–241

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Kohyama T, Yamauchi Y, Kato J, Takami K, Okazaki H, Desaki M, Nagase T, Rennard SI, Takizawa H (2009) C-reactive protein modulates human lung fibroblast migration. Exp Lung Res 35:48–58

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Haynes CL (2013) The role of p38 MAPK in neutrophil functions: single cell chemotaxis and surface marker expression. Analyst 138:6826–6833

    Article  CAS  PubMed  Google Scholar 

  • Kohyama T, Ertl RF, Valenti V, Spurzem J, Kawamoto M, Nakamura Y, Veys T, Allegra L, Romberger D, Rennard SI (2001) Prostaglandin E(2) inhibits fibroblast chemotaxis. Am J Phys Lung Cell Mol Phys 281:L1257–L1263

    CAS  Google Scholar 

  • Kohyama T, Liu X, Wen FQ, Kobayashi T, Fang Q, Abe S, Cieslinski L, Barnette MS, Rennard SI (2004) Cytokines modulate cilomilast response in lung fibroblasts. Clin Immunol 111:297–302

    Article  CAS  PubMed  Google Scholar 

  • Kohyama T, Liu XD, Wen FQ, Kim HJ, Takizawa H, Rennard SI (2002) Prostaglandin D2 inhibits fibroblast migration. Eur Respir J 19:684–689

    Article  CAS  PubMed  Google Scholar 

  • Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Wang CN, Lee YL, Tsai YR, Liu JJ (2015) High mobility group box 1 induced human lung myofibroblasts differentiation and enhanced migration by activation of MMP-9. PLoS One 10:e0116393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Prasad A, Jia Y, Roy SG, Loison F, Mondal S, Kocjan P, Silberstein LE, Ding S, Luo HR (2011) Pretreatment with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor SF1670 augments the efficacy of granulocyte transfusion in a clinically relevant mouse model. Blood 117:6702–6713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  PubMed  Google Scholar 

  • Nah SS, Choi IY, Lee CK, Oh JS, Kim YG, Moon HB, Yoo B (2008) Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes. Rheumatology (Oxford, England) 47:425–431

    Article  CAS  Google Scholar 

  • Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004

    CAS  PubMed  Google Scholar 

  • Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  CAS  PubMed  Google Scholar 

  • Popovic PJ, DeMarco R, Lotze MT, Winikoff SE, Bartlett DL, Krieg AM, Guo ZS, Brown CK, Tracey KJ, Zeh HJ 3rd (2006) High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonists. J Immunol 177:8701–8707

    Article  CAS  PubMed  Google Scholar 

  • Queisser MA, Kouri FM, Konigshoff M, Wygrecka M, Schubert U, Eickelberg O, Preissner KT (2008) Loss of RAGE in pulmonary fibrosis: molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol 39:337–345

    Article  CAS  PubMed  Google Scholar 

  • Raghow R (1994) The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 8:823–831

    Article  CAS  PubMed  Google Scholar 

  • Rennard SI, Jaurand MC, Bignon J, Kawanami O, Ferrans VJ, Davidson J, Crystal RG (1984) Role of pleural mesothelial cells in the production of the submesothelial connective tissue matrix of lung. Am Rev Respir Dis 130:267–274

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  • Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, Venereau E, Apuzzo T, De Marchis F, Pedotti M, Bachi A, Thelen M, Varani L, Mellado M, Proudfoot A, Bianchi ME, Uguccioni M (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleicher ED, Wagner E, Nerlich AG (1997) Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 99:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorci G, Riuzzi F, Giambanco I, Donato R (2013) RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta 1833:101–109

    Article  CAS  PubMed  Google Scholar 

  • Suganuma H, Sato A, Tamura R, Chida K (1995) Enhanced migration of fibroblasts derived from lungs with fibrotic lesions. Thorax 50:984–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Togo S, Holz O, Liu X, Sugiura H, Kamio K, Wang X, Kawasaki S, Ahn Y, Fredriksson K, Skold CM, Mueller KC, Branscheid D, Welker L, Watz H, Magnussen H, Rennard SI (2008) Lung fibroblast repair functions in patients with chronic obstructive pulmonary disease are altered by multiple mechanisms. Am J Respir Crit Care Med 178:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11:91–99

    Article  CAS  PubMed  Google Scholar 

  • White ES, Atrasz RG, Dickie EG, Aronoff DM, Stambolic V, Mak TW, Moore BB, Peters-Golden M (2005) Prostaglandin E(2) inhibits fibroblast migration by E-prostanoid 2 receptor-mediated increase in PTEN activity. Am J Respir Cell Mol Biol 32:135–141

    Article  CAS  PubMed  Google Scholar 

  • White ES, Thannickal VJ, Carskadon SL, Dickie EG, Livant DL, Markwart S, Toews GB, Arenberg DA (2003) Integrin alpha4beta1 regulates migration across basement membranes by lung fibroblasts: a role for phosphatase and tensin homologue deleted on chromosome 10. Am J Respir Crit Care Med 168:436–442

    Article  PubMed  Google Scholar 

  • Wilkinson PC (1998) Chemotaxis. In: Delves PJ (ed) encyclopedia of immunology, 2nd edn. Elsevier, Oxford, pp 533–537

    Chapter  Google Scholar 

  • Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25:2185–2197

    Article  CAS  PubMed  Google Scholar 

  • Yonchuk JG, Silverman EK, Bowler RP, Agusti A, Lomas DA, Miller BE, Tal-Singer R, Mayer RJ (2015) Circulating soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the lung. Am J Respir Crit Care Med 192:785–792

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Yang K, Jing Y, Du R, Zhu Z, Lu L, Zhang R (2012) The effects of low-dose nepsilon-(carboxymethyl)lysine (CML) and nepsilon-(carboxyethyl)lysine (CEL), two main glycation free adducts considered as potential uremic toxins, on endothelial progenitor cell function. Cardiovasc Diabetol 11:90–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Takayuki Jujo, Ms. Tomoko Misawa, Ms. Ikuko Sakamoto, and Ms. Akiko Moriya for the experimental assistance, and Ms. Chieko Handa, Ms. Tamie Hirano, and Ms. Mika Sakurai for the secretarial assistance.

Funding

This research was supported by grants from JSPS KAKENHI (grant number 17K09646) and GSK Japan Research Grant 2016 (grant number A-35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ikari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, N., Ikari, J., Anazawa, R. et al. S100A12 inhibits fibroblast migration via the receptor for advanced glycation end products and p38 MAPK signaling. In Vitro Cell.Dev.Biol.-Animal 55, 656–664 (2019). https://doi.org/10.1007/s11626-019-00384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00384-x

Keywords

Navigation