Skip to main content
Log in

LncRNA TUG1 contributes to cardiac hypertrophy via regulating miR-29b-3p

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy with maladjusted cardiac remodeling is the leading cause of heart failure. In the past decades, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been proved to exert multiple functions in cellular biological behaviors; however, their role in cardiac hypertrophy remains largely unclear. Presently, we first obtained hypertrophic H9c2 cells by treating with angiotensin II (Ang II) and uncovered upregulation of lncRNA taurine upregulated gene 1 (TUG1) in such H9c2 cells. Then, we demonstrated that silencing TUG1 attenuated Ang II–induced cardiac hypertrophy. Besides, a strong interactivity of TUG1 with miR-29b-3p at the putative sites was validated, suggesting that TUG1 was an endogenous sponge of miR-29b-3p in H9c2 cells. Additionally, the expression of miR-29b-3p was strikingly reduced by TUG1 upregulation and also inhibited under Ang II treatment, whereas it was restored after silencing TUG1 in hypertrophic cells. Also, we proved miR-29b-3p as a negative regulator in cardiac hypertrophy. Finally, miR-29b-3p inhibition abolished the anti-hypertrophy effect of TUG1 depletion in Ang II–treated H9c2 cells. Collectively, our findings confirmed that TUG1 functioned as a positive modulator of cardiac hypertrophy via sponging miR-29b-3p, indicating that TUG1 might serve as a potential target for the treatment of cardiac hypertrophy and even heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, Li Z, Shang X, Liu Y (2015) The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget 6:19759–19779

    PubMed  PubMed Central  Google Scholar 

  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  CAS  PubMed  Google Scholar 

  • Chen L (2017) MiR-29b-3p promotes chondrocyte apoptosis and facilitates the occurrence and development of osteoarthritis by targeting PGRN, vol 21, pp 3347–3359

    Google Scholar 

  • Diwan A, Dorn GW 2nd (2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 22:56–64

    CAS  Google Scholar 

  • Drummond C, Hill M, Shi H, Fan X, Xie J, Haller S, Kennedy D, Liu J, Garrett M, Xie Z, Cooper C, Shapiro J, Tian J (2016) Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts. Physiol Genomics 48:220–229

    Article  CAS  PubMed  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  CAS  PubMed  Google Scholar 

  • Han D, Gao Q, Cao F (2017) Long noncoding RNAs (LncRNAs) - the dawning of a new treatment for cardiac hypertrophy and heart failure. Biochim Biophys Acta 1863:2078–2084

    Article  CAS  Google Scholar 

  • Jiang N, Xia J, Jiang B, Xu Y, Li Y (2018) TUG1 alleviates hypoxia injury by targeting miR-124 in H9c2 cells. Biomed Pharmacother 103:1669–1677

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhang Z, Yang H, Lin Q, Han C, Qin X (2017) The involvement of miR-29b-3p in arterial calcification by targeting matrix metalloproteinase-2. Biomed Res Int 2017

  • Kakimoto Y, Tanaka M, Hayashi H, Yokoyama K, Osawa M (2018) Overexpression of miR-221 in sudden death with cardiac hypertrophy patients. Heliyon 4:e00639

    Article  PubMed  PubMed Central  Google Scholar 

  • Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D (2013) Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2:e000078

    Article  PubMed  PubMed Central  Google Scholar 

  • Karapetyan AR, Buiting C, Kuiper RA, Coolen MW (2013) Regulatory roles for long ncRNA and mRNA. Cancers (Basel) 5:462–490

    Article  CAS  Google Scholar 

  • Klinge CM (2018) Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 25:R259–R282

    Article  CAS  PubMed  Google Scholar 

  • Leistner DM, Boeckel J-N, Reis SM, Thome CE, De Rosa R, Keller T, Palapies L, Fichtlscherer S, Dimmeler S, Zeiher AM (2016) Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur Heart J 37:1738–1749

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou G, Feng J, Zhang J, Hou L, Cheng Z (2018) Upregulation of lncRNA VDR/CASC15 induced by facilitates cardiac hypertrophy through modulating miR-432-5p/TLR4 axis. Biochem Biophys Res Commun 503:2407–2414. https://doi.org/10.1016/j.bbrc.2018.06.169

    Article  CAS  PubMed  Google Scholar 

  • Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liu H, Cheng H, Li Y, Li X, Zhu C (2017) Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. Onco Targets Ther 10:2461–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long J, Menggen Q, Wuren Q, Shi Q, Pi X (2018) Long noncoding RNA taurine-upregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma. Med Sci Monit 24:1547–1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397

    Article  CAS  PubMed  Google Scholar 

  • Marques F, Vizi D, Khammy O, Mariani J, Kaye D (2016) The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 18:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Rainer J, Meraviglia V, Blankenburg H, Piubelli C, Pramstaller PP, Paolin A, Cogliati E, Pompilio G, Sommariva E, Domingues FS, Rossini A (2018) The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics 19:491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, Vecchione C, Valenti V, Chimenti I, De Falco E, Sciarretta S, Frati G (2017) A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Med Cell Longev 2017:3920195

    Article  CAS  Google Scholar 

  • Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C (2017) LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget 8:47565–47573

    PubMed  PubMed Central  Google Scholar 

  • Shen S, Jiang H, Bei Y, Xiao J, Li X (2017) Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem 41:1830–1837

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Zhao D, Wu Y, Yao R, Zhou L, Lu L, Gao W, Sun Y (2018) The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol Med 22:3847–3856. https://doi.org/10.1111/jcmm.13657

    Article  CAS  PubMed Central  Google Scholar 

  • Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thum T, Condorelli G (2015) Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 116:751–762

    Article  CAS  PubMed  Google Scholar 

  • Tu J, Zhao Z, Xu M, Lu X, Chang L, Ji J (2018) NEAT1 upregulates TGF-beta1 to induce hepatocellular carcinoma progression by sponging hsa-mir-139-5p. J Cell Physiol 233:8578–8587. https://doi.org/10.1002/jcp.26524

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen Q (2018) Role of taurine upregulated gene 1 as a predictor of poor outcome in osteosarcoma. J Cancer Res Ther 14:405–409

    Article  Google Scholar 

  • Wang RY, Rudser KD, Dengel DR, Braunlin EA, Steinberger J, Jacobs DR, Sinaiko AR, Kelly AS (2017) The carotid intima-media thickness and arterial stiffness of pediatric Mucopolysaccharidosis patients are increased compared to both pediatric and adult controls. Int J Mol Sci 18

  • Widlansky ME (2018) miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders. 10

  • Xu Y, Deng W, Zhang W (2018) Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed Pharmacother 104:509–519

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Tang X, Wang Z, Sun D, Wei X, Ding Y (2018) TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci Rep 38:BSR20180677. https://doi.org/10.1042/bsr20180677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Gu H, Chen X, Fu S, Wang C, Xu H, Feng Q, Ni Y (2014) Cardiac hypertrophy and dysfunction induced by overexpression of miR-214 in vivo. J Surg Res 192:317–325

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Yuan Y, Rao S, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660

    PubMed  Google Scholar 

  • Zhu Y, Feng Z, Jian Z, Xiao Y (2018a) Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia. Mol Med Rep 18:3451–3460

    CAS  PubMed  Google Scholar 

  • Zhu YFZ, Jian Z, Xiao Y (2018b) Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia. Mol Med Rep 35:29–36

    Google Scholar 

Download references

Acknowledgements

Thank you for all the participators.

Funding

This work was funded by the role of GRK4 methylation in the hypertension induced by pregnancy cold-exposure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Wang, J., Tang, L. et al. LncRNA TUG1 contributes to cardiac hypertrophy via regulating miR-29b-3p. In Vitro Cell.Dev.Biol.-Animal 55, 482–490 (2019). https://doi.org/10.1007/s11626-019-00368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00368-x

Keywords

Navigation