Skip to main content
Log in

Over-expression of CNTF in bone marrow mesenchymal stem cells protects RPE cells from short-wavelength, blue-light injury

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Increasing evidence has demonstrated that excessive blue-light (BL) with high photochemical energy and phototoxicity could induce apoptosis in retinal pigment epithelium (RPE) cells. RPE apoptosis leads to retina damage and further aggravate age-related macular degeneration (ARMD). Because of their neuroprotective, plasticity, and immunomodulatory ability, bone marrow mesenchymal stem cells (BMSCs) are recognized for retinal neuroprotection. RPE cells possess ciliary neurotrophic factor (CNTF) receptor complexes and can respond to CNTF; hence, we investigated the effects of BMSCs over-expressing CNTF on BL-injured RPE cells. BL-injured RPE cells were co-cultured with CNTF-BMSCs and GFP-BMSCs for 24 and 48 h. Superoxide dismutase and malondialdehyde assays were conducted to examine the effects of CNTF-BMSCs on the oxidative stress of RPE cells. VEGF protein secretion by RPE was determined by ELISA, and western blotting analysis was used to determine apoptotic protein expression and autophagic flux. Immunofluorescence was used to demonstrate the relationship between autophagy and apoptosis. We found that CNTF-BMSCs enhanced antioxidant capacity, decreased VEGF secretion, promoted autophagic flux, and inhibited apoptosis in BL-injured RPE cells, compared to GFP-BMSCs. Our findings suggest that CNTF over-expression enhances the protective effects of BMSCs on RPE cells, thus indicating subretinal-transplantation of CNTF-BMSCs may be a promising therapy for BL-injured retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Adijanto J, Banzon T, Jalickee S, Wang NS, Miller SS (2009) CO2-induced ion and fluid transport in human retinal pigment epithelium. J Gen Physiol 133(6):603–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnault E, Barrau C, Nanteau C, Gondouin P, Bigot K, Vienot F, Gutman E, Fontaine V, Villette T, Cohen-Tannoudji D, Sahel JA, Picaud S (2013) Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS One 8(8):e71398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnhold S, Heiduschka P, Klein H, Absenger Y, Basnaoglu S, Kreppel F, Henke-Fahle S, Kochanek S, Bartz-Schmidt KU, Addicks K, Schraermeyer U (2006) Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci 47(9):4121–4129

    Article  PubMed  Google Scholar 

  • Behar-Cohen F, Martinsons C, Vienot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30(4):239–257

    Article  CAS  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Boyle KB, Randow F (2013) The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 16(3):339–348

    Article  CAS  PubMed  Google Scholar 

  • Braunstein RE, Sparrow JR (2005) A blue-blocking intraocular lens should be used in cataract surgery. Arch Ophthalmol 123(4):547–549

    Article  PubMed  Google Scholar 

  • Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL (2011) Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 18:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sawada O, Kohno H, Le YZ, Subauste C, Maeda T, Maeda A (2013) Autophagy protects the retina from light-induced degeneration. J Biol Chem 288(11):7506–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contin MA, Benedetto MM, Quinteros-Quintana ML, Guido ME (2016) Light pollution: the possible consequences of excessive illumination on retina. Eye (Lond) 30(2):255–263

    Article  CAS  Google Scholar 

  • Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 42(8):1855–1866

    CAS  PubMed  Google Scholar 

  • Fleming A, Noda T, Yoshimori T, Rubinsztein DC (2011) Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Flores-Bellver M, Bonet-Ponce L, Barcia JM, Garcia-Verdugo JM, Martinez-Gil N, Saez-Atienzar S, Sancho-Pelluz J, Jordan J, Galindo MF, Romero FJ (2014) Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal. Cell Death Dis 5:e1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm C, Wenzel A, Williams T, Rol P, Hafezi F, Reme C (2001) Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest Ophthalmol Vis Sci 42(2):497–505

    CAS  PubMed  Google Scholar 

  • Hadziahmetovic M, Kumar U, Song Y, Grieco S, Song D, Li Y, Tobias JW, Dunaief JL (2012) Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE. Invest Ophthalmol Vis Sci 53(9):5231–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Xu G, Guo J, Xie M, Chen L, Xu W (2016) Mesenchymal stem cells modulate light-induced activation of retinal microglia through CX3CL1/CX3CR1 signaling. Ocul Immunol Inflamm 24(6):684–692

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Xu W, Xu G (2013) Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration. Ocul Immunol Inflamm 21(4):276–285

    Article  CAS  PubMed  Google Scholar 

  • Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR (2012) The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 31(1):28–42

    Article  PubMed  Google Scholar 

  • Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, Araie M, Yanagi Y (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85(2):234–241

    Article  CAS  PubMed  Google Scholar 

  • Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Asp Med 33(4):399–417

    Article  CAS  Google Scholar 

  • Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe 65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122(3):449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaarniranta K, Sinha D, Blasiak J, Kauppinen A, Vereb Z, Salminen A, Boulton ME, Petrovski G (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9(7):973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalb R (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 28(1):5–11

    Article  CAS  PubMed  Google Scholar 

  • Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: a review. Eye (Lond) 9(Pt 6):763–771

    Article  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA et al (2008),Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175

  • Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H (2014) Damage of p hotoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep 4:5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, Wan Abdul Halim WH, Ng MH, Ruszymah BH, Chowdhury SR, Bastion ML, Then KY (2015) Safety and efficacy of human Wharton’s Jelly-derived mesenchymal stem cells therapy for retinal degeneration. PLoS One 10(6):e0128973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Wen R, Banzon T, Maminishkis A, Miller SS (2011) CNTF mediates neurotrophic factor secretion and fluid absorption in human retinal pigment epithelium. PLoS One 6(9):e23148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76(4):397–403

    Article  CAS  PubMed  Google Scholar 

  • Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–357

    Article  CAS  PubMed  Google Scholar 

  • Mitter SK, Rao HV, Qi X, Cai J, Sugrue A, Dunn WA Jr, Grant MB, Boulton ME (2012) Autophagy in the retina: a potential role in age-related macular degeneration. Adv Exp Med Biol 723:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munemasa Y, Kitaoka Y (2015) Autophagy in axonal degeneration in glaucomatous optic neuropathy. Prog Retin Eye Res 47:1–18

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Musiwaro P, Smith M, Manifava M, Walker SA, Ktistakis NT (2013) Characteristics and requirements of basal autophagy in HEK 293 cells. Autophagy 9(9):1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, Soleimani M (2013) Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett 541:43–48

    Article  CAS  PubMed  Google Scholar 

  • Park HY, Kim JH, Park CK (2012) Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. Cell Death Dis 3:e290

    Article  PubMed  PubMed Central  Google Scholar 

  • Shang YM, Wang GS, Sliney D, Yang CH, Lee LL (2014) White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122(3):269–276

    PubMed  Google Scholar 

  • Shi G, Maminishkis A, Banzon T, Jalickee S, Li R, Hammer J, Miller SS (2008) Control of chemokine gradients by the retinal pigment epithelium. Invest Ophthalmol Vis Sci 49(10):4620–4630

    Article  PubMed  PubMed Central  Google Scholar 

  • Sliney DH (2002) How light reaches the eye and its components. Int J Toxicol 21(6):501–509

    Article  CAS  PubMed  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  CAS  PubMed  Google Scholar 

  • Subramanian P, Mendez EF, Becerra SP (2016) A novel inhibitor of 5-lipoxygenase (5-LOX) prevents oxidative stress-induced cell death of retinal pigment epithelium (RPE) cells. Invest Ophthalmol Vis Sci 57(11):4581–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Waguri S (2010) Measurement of autophagy in cells and tissues. Methods Mol Biol 648:193–214

    Article  CAS  PubMed  Google Scholar 

  • Turner PL, Mainster MA (2008) Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol 92(11):1439–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1):e4160

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, Grompe M, Adamus G, Appukuttan B, Lund R (2010) Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 5(2):e9200

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei T, Kang Q, Ma B, Gao S, Li X, Liu Y (2015) Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med 9(2):476–482

    Article  PubMed  Google Scholar 

  • Wu J, Seregard S, Spangberg B, Oskarsson M, Chen E (1999) Blue light induced apoptosis in rat retina. Eye (Lond) 13(Pt 4):577–583

    Article  Google Scholar 

  • Xia T, and Rizzolo LJ, (2017),Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res

    Google Scholar 

  • Xu W, Wang X, Xu G, Guo J (2013a) Basic fibroblast growth factor expression is implicated in mesenchymal stem cells response to light-induced retinal injury. Cell Mol Neurobiol 33(8):1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Wang X, Xu G, Guo J (2013b) Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro. Arq Bras Oftalmol 76(2):105–110

    Article  PubMed  Google Scholar 

  • Zhang D, Qiu W, Wang P, Zhang P, Zhang F, Wang P, and Sun Y, (2017),Autophagy can alleviate severe burn-induced damage to the intestinal tract in mice. Surgery

    Google Scholar 

  • Zhu Y, Zhao KK, Tong Y, Zhou YL, Wang YX, Zhao PQ, Wang ZY (2016) Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy. Sci Rep 6:26322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fei Huang, Zeng Wang, Ruiqing Chen, and Bing Wu for their technical assistance.

Funding

This study was supported by the Chinese Nature Science Foundation (grant no. 81770948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxing Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Tetsuji Okamoto

The work was conducted at the Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China.

Electronic supplementary material

ESM 1

(XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Xu, G. Over-expression of CNTF in bone marrow mesenchymal stem cells protects RPE cells from short-wavelength, blue-light injury. In Vitro Cell.Dev.Biol.-Animal 54, 355–365 (2018). https://doi.org/10.1007/s11626-018-0243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-0243-9

Keywords

Navigation