Skip to main content
Log in

Characterization of swine testicular cell line as immature porcine Sertoli cell line

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Swine testicular (ST) cell line is isolated from swine fetal testes and has been widely used in biomedical research fields related to pig virus infection. However, the potential benefit and utilization of ST cells in boar reproductive studies has not been fully explored. As swine fetal testes mainly contain multiple types of cells such as Leydig cells, Sertoli cells, gonocytes, and peritubular myoid cells, it is necessary to clarify the cell type of ST cell line. In this study, we identified ST cell line was a collection of Sertoli cells by analyzing the unique morphological characteristic with satellite karyosomes and determining the protein expression of two markers (androgen-binding protein, ABP; Fas ligand, FASL) of Sertoli cells. Then ST cells were further confirmed to be immature Sertoli cells by examining the expression of three markers (anti-Mullerian hormone, AMH; keratin 18, KRT18; follicle-stimulating hormone receptor, FSHR). In conclusion, ST cells are a collection of immature Sertoli cells which can be good experimental materials for the researches involved in Sertoli cell functions and maturation, or even in boar reproductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Buckland-Nicks J, Chia FS (1986) Fine structure of Sertoli cells in three marine snails with a discussion on the functional morphology of Sertoli cells in general. Cell Tissue Res 245:305–313

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Gauger P, Stafne M, Thomas J, Arruda P, Burrough E, Madson D, Brodie J, Magstadt D, Derscheid R, Welch M, Zhang J (2015) Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets. Virology 482:51–59

    Article  CAS  PubMed  Google Scholar 

  • Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc 2008(5): pdb-prot4986

  • Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, Kuwahara K, Harada M, Matsuda H, Matsuoka S, Okita K, Takahashi K, Nakagawa M, Ikeda T, Sakata R, Mummery CL, Nakatsuji N, Yamanaka S, Nakao K, Yamashita JK (2011) Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS ONE 6:e16734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanty Y, Belotserkovskaya R, Coates J, Jackson SP (2012) RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 26:1179–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi P, Di Giacomo D, Geremia R (2013) The endocannabinoid system and spermatogenesis. Front Endocrinol (Lausanne) 4:192

    Google Scholar 

  • Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C, Matunis MJ (2012) RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal 5:ra88

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagenäs L, Ritzén EM, Ploöen L, Hansson V, French FS, Nayfeh SN (1975) Sertoli cell origin of testicular androgen-binding protein (ABP). Mol Cell Endocrinol 2:339–350

    Article  PubMed  Google Scholar 

  • Hanada S, Harada M, Kumemura H, Bishr Omary M, Koga H, Kawaguchi T, Taniguchi E, Yoshida T, Hisamoto T, Yanagimoto C, Maeyama M, Ueno T, Sata M (2007) Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. J Hepatol 47:93–102

    Article  CAS  PubMed  Google Scholar 

  • Josso N, Lamarre I, Picard JY, Berta P, Davies N, Morichon N, Peschanski M, Jeny R (1993) Anti-Müllerian hormone in early human development. Early Hum Dev 33:91–99

    Article  CAS  PubMed  Google Scholar 

  • Jost A (1953) Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Recent Prog Horm Res 8:349–418

    Google Scholar 

  • Kodani M, Kodani K (1966) The in vitro cultivation of mammalian Sertoli cells. Proc Natl Acad Sci U S A 56:1200–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kynast RG, Davis DW, Phillips RL, Rines HW (2012) Gamete formation via meiotic nuclear restitution generates fertile amphiploid F1 (oat×maize) plants. Sex Plant Reprod 25:111–122

    Article  CAS  PubMed  Google Scholar 

  • Laude H, Chapsal JM, Gelfi J, Labiau S, Grosclaude J (1986) Antigenic structure of transmissible gastroenteritis virus. I Properties of monoclonal antibodies directed against virion proteins. J Gen Virol 67:119–130

    Article  CAS  PubMed  Google Scholar 

  • Luca G, Nastruzzi C, Calvitti M, Becchetti E, Baroni T, Neri LM, Capitani S, Basta G, Brunetti P, Calafiore R (2005) Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and in vivo results in NOD mice. Cell Transplant 14:249–261

    Article  PubMed  Google Scholar 

  • McClurkin AW, Norman JO (1966) Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can J Comp Med Vet Sci 30:190–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menegazzo M, Zuccarello D, Luca G, Ferlin A, Calvitti M, Mancuso F, Calafiore R, Foresta C (2011) Improvements in human sperm quality by long-term in vitro co-culture with isolated porcine Sertoli cells. Hum Reprod 26:2598–2605

    Article  PubMed  Google Scholar 

  • Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  CAS  PubMed  Google Scholar 

  • Orth JM, Gunsalus GL, Lamperti AA (1988) Evidence from Sertoli cell-depleted rats indicates that spermatid numbers in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 122:787–794

    Article  CAS  PubMed  Google Scholar 

  • Pronk A, Leguit P, van Papendrecht AAH, Hagelen E, van Vroonhoven TJ, Verbrugh HA (1993) A cobblestone cell isolated from the human omentum: the mesothelial cell; isolation, identification, and growth characteristics. In Vitro Cell Dev Biol Anim 29:127–134

    Article  Google Scholar 

  • Rannikko A, Penttilä TL, Zhang FP, Toppari J, Parvinen M, Huhtaniemi I (1996) Stage-specific expression of the FSH receptor gene in the prepubertal and adult rat seminiferous epithelium. J Endocrinol 151:29–35

    Article  CAS  PubMed  Google Scholar 

  • Romano P, Manniello A, Aresu O, Armento M, Cesaro M, Parodi B (2009) Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines. Nucleic Acids Res 37:925–932

    Article  Google Scholar 

  • Sato Y, Yoshida K, Nozawa S, Yoshiike M, Arai M, Otoi T, Iwamoto T (2013) Establishment of adult mouse Sertoli cell lines by using the starvation method. Reproduction 145:505–516

    Article  CAS  PubMed  Google Scholar 

  • Senturk GE, Canillioglu YE (2014) Which histochemical staining technique should I choose for biological specimens. In: Méndez-Vilas A (ed) Microscopy: advances in scientific research and education. Formatex Research Center, Badajoz, Spain, pp 769–775

    Google Scholar 

  • Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    Article  CAS  PubMed  Google Scholar 

  • Shim H, Gutiérrez-Adán A, Chen LR, BonDurant RH, Behboodi E, Anderson GB (1997) Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 57:1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Stosiek P, Kasper M, Karsten U (1990) Expression of cytokeratins 8 and 18 in human Sertoli cells of immature and atrophic seminiferous tubules. Differentiation 43:66–70

    Article  CAS  PubMed  Google Scholar 

  • Tan KA, De Gendt K, Atanassova N, Walker M, Sharpe RM, Saunders PT, Denolet E, Verhoeven G (2005) The role of androgens in Sertoli cell proliferation and functional maturation: studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 146:2674–2683

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, Kasahara Y, Watanabe K, Hosokawa N, Doi H, Nakajima K, Adachi H, Nomoto A (2015) A new cell line from the fat body of Spodoptera litura (Lepidoptera, Noctuidae) and detection of lysozyme activity release upon immune stimulation. In Vitro Cell Dev Biol Anim 51:15–18

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Meusy-Dessolle N, Josso N (1981) Waning of anti-Müllerian activity: an early sign of Sertoli cell maturation in the developing pig. Biol Reprod 24:923–931

    Article  CAS  PubMed  Google Scholar 

  • Tung PS, Skinner MK, Fritz IB (1984) Fibronectin synthesis is a marker for peritubular cell contaminants in Sertoli cell-enriched cultures. Biol Reprod 30:199–211

    Article  CAS  PubMed  Google Scholar 

  • Van Vorstenbosch CJ, Spek E, Colenbrander B, Wensing CJ (1984) Sertoli cell development of pig testis in the fetal and neonatal period. Biol Reprod 31:565–577

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Professor Guoquan Liu (Huazhong Agricultural University) for his advice on revising this manuscript. This work was supported financially by the National Natural Science Foundation of China (31572362), Key Projects in Doctoral Fund of Ministry of Education of China (20120146110018), National Science R&T Program (2015BAD03B02, 2014BAD20B01), Hubei Science R&T Program (2014BBB008, 2014BBA194), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenge Li.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Song, H., Guan, K. et al. Characterization of swine testicular cell line as immature porcine Sertoli cell line. In Vitro Cell.Dev.Biol.-Animal 52, 427–433 (2016). https://doi.org/10.1007/s11626-015-9994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9994-8

Keywords

Navigation