Skip to main content
Log in

Depletion of host cell riboflavin reduces Wolbachia levels in cultured mosquito cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Wolbachia is an obligate intracellular alphaproteobacterium that occurs in arthropod and nematode hosts. Wolbachia presumably provides a fitness benefit to its hosts, but the basis for its retention and spread in host populations remains unclear. Wolbachia genomes retain biosynthetic pathways for some vitamins, and the possibility that these vitamins benefit host cells provides a potential means of selecting for Wolbachia-infected cell lines. To explore whether riboflavin produced by Wolbachia is available to its host cell, we established that growth of uninfected C7-10 mosquito cells decreases in riboflavin-depleted culture medium. A well-studied inhibitor of riboflavin uptake, lumiflavin, further inhibits growth of uninfected C7-10 cells with an LC50 of approximately 12 μg/ml. Growth of C/wStr1 mosquito cells, infected with Wolbachia from the planthopper, Laodelphax striatellus, was enhanced in medium containing low levels of lumiflavin, but Wolbachia levels decreased. Lumiflavin-enhanced growth thus resembled the improved growth that accompanies treatment with antibiotics that deplete Wolbachia, rather than a metabolic advantage provided by the Wolbachia infection. We used the polymerase chain reaction to validate the decrease in Wolbachia abundance and evaluated our results in the context of a proteomic analysis in which we detected nearly 800 wStr proteins. Our data indicate that Wolbachia converts riboflavin to FMN and FAD for its own metabolic needs, and does not provide a source of riboflavin for its host cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167

    Article  PubMed  CAS  Google Scholar 

  • Beare PA, Sandoz KM, Omsland A, Rockey DD, Henzein RA (2011) Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front Microbiol 2:1–13

    Article  Google Scholar 

  • Beckman JF, Fallon AM (2013) Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem Mol Biol 43:867–878

    Article  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5(4):e1000368. doi:10.1371/journal.ppat.1000368

    Article  PubMed  PubMed Central  Google Scholar 

  • Coquard D, Huecas M, Ott M, van Dijl JM, van Loon APGM, Hohmann HP (1997) Molecular cloning and characterization of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet 254:81–84

    Article  PubMed  CAS  Google Scholar 

  • Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM et al (2012) Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22:2467–2477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA et al (2006) Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2(2):e21. doi:10.1371/journal.pgen.0020021

    Article  PubMed  PubMed Central  Google Scholar 

  • Fallon AM (2008) Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB. In Vitro Cell Dev Biol Anim 44:154–161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fallon AM, Baldridge GD, Higgins LA, Witthuhn BA (2013a) Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells. In Vitro Cell Dev Biol Anim 49:66–73

    Article  CAS  Google Scholar 

  • Fallon AM, Kurtz CM, Carroll EM (2013b) The oxidizing agent, paraquat, is more toxic to Wolbachia than to mosquito host cells. In Vitro Cell Dev Biol Anim 49:501–507

    Article  CAS  Google Scholar 

  • Fallon AM, Witthuhn BA (2009) Proteasome activity in a naive mosquito cell line infected with Wolbachia pipientis wAlbB. In Vitro Cell Dev Biol Anim 45:460–466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N et al (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4):e121. doi:10.1371/journal.pbiol.0030121

    Article  PubMed  PubMed Central  Google Scholar 

  • Harcombe W, Hoffmann AA (2004) Wolbachia effects in Drosophila melanogaster: in search of fitness benefits. J Invertebr Pathol 87:45–50

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769–774

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Islam MS, Dobson SL (2006) Wolbachia effects on Aedes albopictus (Diptera: Culicidae) immature survivorship and development. J Med Entomol 43:689–695

    Article  PubMed  Google Scholar 

  • Jin C, Barrientos A, Tzagoloff A (2003) Yeast dihydroxybutanone phosphate synthase, an enzyme of the riboflavin biosynthetic pathway, has a second unrelated function in expression of mitochondrial respiration. J Biol Chem 278:14698–14703

    Article  PubMed  CAS  Google Scholar 

  • Knegt FHP, Mello LV, Reis FC, Santos MT, Vicentini R, Ferraz LFC, Ottoboni LMM (2008) ribB and ribBA genes from Acidithiobacillus ferrooxidans: expression levels under different growth conditions and phylogenetic analysis. Res Microbiol 159:423–431

    Article  PubMed  CAS  Google Scholar 

  • Kremer N, Voronin D, Charif D, Mavingui P, Mollereau B, Vavre F (2009) Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog 5(10):e1000630. doi:10.1371/journal.ppat.1000630

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Carlow CKS (2012) Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi. PLoS ONE 7(12):e51597. doi:10.1371/journal.pone.0051597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lichtenstein EP (1948) Growth of Culex molestus under sterile conditions. Nature 162:227

    Article  PubMed  CAS  Google Scholar 

  • Long Q, Ji L, Wang H, Xie J (2010) Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets. Chem Biol Drug Des 75:339–347

    Article  PubMed  CAS  Google Scholar 

  • McDonagh B, Reguejo R, Fuentes-Almagro CA, Ogueta S, Bárcena JA, Padilla CA (2011) Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3). J Proteome 74(1):2487–2497

    Article  CAS  Google Scholar 

  • McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J, Fischer K et al (2010) Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS ONE 5(6):e1029. doi:10.1371/journal.pone.001029

    Article  Google Scholar 

  • Noda H, Miyoshi T, Koizumi Y (2002) In vitro cultivation of Wolbachia in insect and mammalian cell lines. In Vitro Cell Dev Biol Anim 38:423–427

    Article  PubMed  Google Scholar 

  • Said HM, Ma TY (1994) Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial cells. Am J Physiol 266:G15–G21

    PubMed  CAS  Google Scholar 

  • Shih KM, Gerenday A, Fallon AM (1998) Culture of mosquito cells in Eagle’s medium. In Vitro Cell Dev Biol Anim 34:629–630

    Article  PubMed  CAS  Google Scholar 

  • Singh KRP, Brown AWA (1957) Nutritional requirements of Aedes aegypti L. J Insect Physiol 1:199–220

    Article  Google Scholar 

  • Sinkins SP, Gould F (2006) Gene drive systems for insect disease vectors. Nat Rev Genet 7:427–435

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Inoue K, Ohta K, Fukatsu R, Maeda J, Yoshida Y, Yuasa H (2009) Identification and functional characterization of rat riboflavin transporter 2. J Biochem 145:437–443

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa A, Masuda S, Katsura T, Inui K (2008) Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol 295:632–641

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grant AI081322 and by the University of Minnesota Agricultural Experiment Station, St. Paul, MN. We thank John Beckmann for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Fallon.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallon, A.M., Baldridge, G.D., Carroll, E.M. et al. Depletion of host cell riboflavin reduces Wolbachia levels in cultured mosquito cells. In Vitro Cell.Dev.Biol.-Animal 50, 707–713 (2014). https://doi.org/10.1007/s11626-014-9758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9758-x

Keywords

Navigation