Skip to main content
Log in

Expression analysis of PAWP during mouse embryonic stem cell-based spermatogenesis in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Postacrosomal sheath WW domain-binding protein (PAWP) is a novel sperm protein identified as a candidate sperm-borne, oocyte-activating factor (SOAF). However, regulation of PAWP gene expression is poorly understood. Therefore, we examined the PAWP gene expression across different stages of mouse embryonic stem cell (ESC)-based spermatogenesis in vitro and compared this expression at different stages of mouse testis development in vivo. Expression of PAWP was also examined in mouse embryonic fibroblasts (MEF), Sertoli cell, and the NIH3T3 cancerous cell line. We used a transgenic mouse ESC line C57BL/6J expressing Stra8-EGFP that was plated in murine ESC medium. To induce differentiation, cells were cultured on gelatin-coated medium with Retinoic Acid (RA) treatment. We applied reverse transcription-PCR and real-time PCR to analyze the differential expression of PAWP mRNA during different stages of mouse ESC differentiation in vitro parallel with mouse testis development in vivo and in cell lines. We found that expression of PAWP is increased during testis development in vivo with greatest expression at postmeiotic phase. It is also highly expressed in mouse ESC-derived germ-like cells after 30 d of RA induction in vitro. PAWP is remarkably expressed in mouse ESC and NIH3T3 cell line. These results indicate that PAWP plays a role in spermatogenesis and germ cell development. Moreover, we suggest PAWP as one of the markers that could be looked in ESC studies as a confirmed testis-specific gene. We also suggest an additional possible role for PAWP in proliferation of cancerous cell in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Anderson E. L.; Baltus A. E.; Roepers-Gajadien H. L.; Hassold T. J.; de Rooij D. G.; van Pelt A. M.; Page D. C. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc. Natl. Acad. Sci. U. S. A. 105(39): 14976–14980; 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowles J.; Knight D.; Smith C.; Wilhelm D.; Richman J.; Mamiya S.; Yashiro K.; Chawengsaksophak K.; Wilson M. J.; Rossant J.; Hamada H.; Koopman P. Retinoid signaling determines germ cell fate in mice. Science 312: 596–600; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chan S. W.; Lim C. J.; Huang C.; Chong Y. F.; Gunaratne H. J.; Hogue K. A.; Blackstock W. P.; Harvey K. F.; Hong W. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene 30: 600–610; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H. I.; Einbond A.; Kwak S. J.; Linn H.; Koepf E.; Peterson S.; Kelly J. W.; Sudol M. Characterization of the WW domain of human Yes-associated protein and its polyproline-containing ligands. J. Biol. Chem. 272: 17070–17077; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Chen H. I.; Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. U. S. A. 92(17): 7819–7823; 1995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng L. J.; Zhou Z. M.; Li J. M.; Zhu H.; Zhu H.; Zhou Y. D.; Wang L. R.; Lin M.; Sha J. H. Expression of a novel HsMCAK mRNA splice variant, tsMCAK gene, in human testis. Life Sci. 71(23): 2741–2757; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Cooke H. J.; Lee M.; Kerr S.; Ruggiu M. A murine homologue of the human DAZ gene is autosomal and expressed only in male and female gonads. Hum. Mol. Genet. 5: 513–516; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Cram D. S.; O'Bryan M. K.; de Kretser D. M. Male infertility genetics—the future. J. Androl. 22: 738–746; 2001.

    CAS  PubMed  Google Scholar 

  • de Rooij D. G.; Russell L. D. All you wanted to know about spermatogonia but were afraid to ask. J. Androl. 21: 776–798; 2000.

    PubMed  Google Scholar 

  • Dhananjayan S. C.; Ramamoorthy S.; Khan O. Y.; Ismail A.; Sun J.; Slingerland J.; O'Malley B. W.; Nawaz Z. WW domain binding protein-2, an E6-assoiated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol. Endocrinol. 20: 2343–2354; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Farini D.; Scaldaferri M. L.; Iona S.; Sala G. L.; De Felici M. Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Dev. Biol. 285: 49–56; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gaudet S.; Branton D.; Lue R. A. Characterization of PDZ-binding kinase, a mitotic kinase. Proc. Natl. Acad. Sci. U. S. A. 97: 5167–5172; 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guan K.; Wolf F.; Becker A.; Engel W.; Nayernia K.; Hasenfuss G. Isolation and cultivation of stem cells from adult mouse testes. Nat. Protoc. 4(2): 143–154; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kanai F.; Marignani P. A.; Sarbassova D.; Yagi R.; Hall R. A.; Donowitz M.; Hisaminato A.; Fujiwara T.; Ito Y.; Cantley L. C.; Yaffe M. B. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19: 6778–6791; 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komuro A.; Nagai M.; Navin N. E.; Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278: 33334–33341; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Lilford R.; Jones A. M.; Bishop D. T.; Thornton J.; Mueller R. Case–control study of whether subfertility in men is familial. BMJ 309(6954): 570–573; 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim S. K.; Orhant-Prioux M.; Toy W.; Tan K. Y.; Lim Y. P. Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway. FASEB J. 25(9): 3004–3018; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Macias M. J.; Wiesner S.; Sudol M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 513(1): 30–37; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Malkov M.; Fisher Y.; Don J. Developmental schedule of the postnatal rat testis determined by flow cytometry. Biol. Reprod. 59(1): 84–92; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y.; Iguchi N.; Kitamura K.; Nishimura H.; Manabe H.; Miyagawa Y.; Koga M.; Matsumiya K.; Okuyama A.; Tanaka H.; Nishimune Y. Cloning and characterization of a mouse spergen-1 localized in sperm mitochondria. Int. J. Androl. 27(3): 152–160; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Meistrich M. L.; van Beek M. E. Spermatogonial stem cells. In: Desjardins C.; Ewing L. L. (eds) Cell and molecular biology of the testis. Oxford University Press, New York, pp 266–295; 1993.

    Google Scholar 

  • Mitsui K.; Tokuzawa Y.; Itoh H.; Segawa K.; Murakami M.; Takahashi K.; Maruyama M.; Maeda M.; Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113: 631–642; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K.; Li M.; Jaroszynski L.; Khusainov R.; Wulf G.; Schwandt I.; Korabiowska M.; Michelmann H. W.; Meinhardt A.; Engel W. Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum. Mol. Genet. 13(14): 1451–1460; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K.; Nolte J.; Michelmann H. W.; Lee J. H.; Rathsack K.; Drusenheimer N.; Dev A.; Wulf G.; Ehrmann I. E.; Elliott D. J.; Okpanyi V.; Zechner U.; Haaf T.; Meinhardt A.; Engel W. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11(1): 125–132; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Nourashrafeddin S.; Ebrahimzadeh-Vesal R.; Miryounesi M.; Aarabi M.; Zarghami N.; Modarressi M.H.; Nouri M. Analysis of SPATA19 gene expression during male germ cells development, lessons from in vivo and in vitro study. 2013. doi:10.1002/cbi3.10010.

  • Oko R.; Sutovsky P. Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J. Reprod. Immunol. 83(1–2): 2–7; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Oulad-Abdelghani M.; Bouillet P.; Décimo D.; Gansmuller A.; Heyberger S.; Dollé P.; Bronner S.; Lutz Y.; Chambon P. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J. Cell Biol. 135(2): 469–477; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Sainz J.; Garcia-Alcalde F.; Blanco A.; Concha A. Genome-wide gene expression analysis in mouse embryonic stem cells. Int. J. Dev. Biol. 55(10–12): 995–1006; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen T. D.; Lee E. J.; Jiang J. High-throughput real-time PCR. Methods Mol. Biol. 429: 89–98; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Scholer H. R.; Ruppert S.; Suzuki N.; Chowdhury K.; Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature 344: 435–439; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Sudol M. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9: 2145–2152; 1994.

    CAS  PubMed  Google Scholar 

  • Sudol M. Newcomers to the WW Domain-Mediated Network of the Hippo Tumor Suppressor Pathway. Genes Cancer. 1(11): 1115–1118; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudol M.; Hunter T. NeW wrinkles for an old domain. Cell 103(7): 1001–1004; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Sutovsky P.; Manandhar G.; Wu A.; Oko R. Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc. Res. Tech. 61(4): 362–378; 2003.

    Article  PubMed  Google Scholar 

  • Thielemans B. F.; Spiessens C.; D'Hooghe T.; Vandrschueren D.; Legius E. Genetic abnormalities and male infertility. A comprehensive review. European Journal of Obstetrics, Gynecology and. Reprod. Biol. 81: 217–225; 1998.

    CAS  Google Scholar 

  • Varelas X.; Sakuma R.; Samavarchi-Tehrani P.; Peerani R.; Rao B. M.; Dembowy J.; Yaffe M. B.; Zandstra P. W.; Wrana J. L. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10(7): 837–848; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wu A. T.; Sutovsky P.; Manandhar G.; Xu W.; Katayama M.; Day B. N.; Park K. W.; Yi Y. J.; Xi Y. W.; Prather R. S.; Oko R. PAWP, A sperm specific WW-domain binding protein, promotes meiotic resumption and pronuclear development during fertilization. J. Biol. Chem. 282: 12164–12175; 2007a.

  • Wu A. T.; Sutovsky P.; Xu W.; Vander Spoel A. C.; Platt F. M.; Oko R. The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport. Dev. Biol. 312(2): 471–483; 2007b.

  • Yuan L.; Liu J. G.; Zhao J.; Brundell E.; Daneholt B.; Höög C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5(1): 73–83; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X.; Milton C. C.; Poon C. L.; Hong W.; Harvey K. F. Wbp2 cooperates with Yorkie to drive tissue growth downstream of the Salvador-Warts-Hippo pathway. Cell Death Differ. 18(8): 1346–1355; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This is a paper of a database from thesis entitled “Analysis of PAWP Gene Expression during in vitro Mouse Embryonic Stem Cell-Based Spermatogenesis” from Tabriz University of Medical Sciences. The authors would like to thank the Women's Reproductive Health Research Center, Tabriz University of Medical Sciences for granting of this work and also the Department of Medical Genetic, Faculty of Medicine, Tehran University of Medical Sciences for technical assistance.

Conflict of interest

The authors have not any conflicts of interest to disclose and all authors support submission to this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nouri.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nourashrafeddin, S., Aarabi, M., Miryounesi, M. et al. Expression analysis of PAWP during mouse embryonic stem cell-based spermatogenesis in vitro. In Vitro Cell.Dev.Biol.-Animal 50, 475–481 (2014). https://doi.org/10.1007/s11626-013-9722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9722-1

Keywords

Navigation