Skip to main content

Advertisement

Log in

Stat5a increases lactation of dairy cow mammary gland epithelial cells cultured in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Signal transducer and activator of transcription 5a (Stat5a) transduces signals of extracellular cytokines and growth factors to the nucleus of mammary gland epithelial cells and thereby regulates gene transcription during pregnancy, lactation, and weaning. However, its function on the milk production of dairy cows needs further investigation. In this experiment, the effects of Stat5a on lactation ability of dairy cow mammary gland epithelial cells (DCMECs) were analyzed. Eukaryotic expression vector pcDNA3.1+-stat5a-αS1 was constructed by inserting stat5a gene into the plasmid vector pcDNA3.1+ and replacing CMV promoter with α-S1-casein 5′ flanking sequence. The recombinant vector was stably transfected into DCMECs after geneticin (G418) selection. The proliferation and viability of DCMECs, expression of β-casein and stat5a gene, and the content of lactose were detected. The results showed that stat5a gene in eukaryotic expression vector pcDNA3.1+-stat5a-αS1 was highly expressed in DCMECs and could increase the lactation ability of DCMECs. The associativity of Stat5a with nutrients on the lactation ability of DCMECs was also evaluated. Lysine (Lys), methionine (Met), sodium acetate, β-sodium hydroxybutyrate, and glucose all had more positive effects on the lactation function of DCMECs after pcDNA3.1+-stat5a-αS1 transfection. The proliferation and viability of DCMECs, expression of β-casein and stat5a gene, and contents of lactose and triglyceride were detected. The results revealed that nutrients could promote expression of Stat5a gene to increase lactation of DCMECs. These data help to clarify the function of stat5 gene on lactation and gene regulatory networks linking stat5a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Berdanier C. D. Nutrient gene interactions. Nutr Today 3: 58–67; 2000.

    Google Scholar 

  • Bionaz M.; Loor J. J. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinformatics and Biology Insights 5: 83–98; 2011.

    PubMed  CAS  Google Scholar 

  • Brown A. M.; Wiggins D.; Gibbons G. F. Glucose phosphorylation is essential for the turnover of neutral lipid and the second stage assembly of triacylglycerol-rich apoB-containing lipoproteins in primary hepatocyte cultures. Arterioscler Thromb Vasc Biol 19: 321–329; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Brym P.; Kaminski S.; Ruść A. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle. J Appl Genet 45(4): 445–452; 2004.

    PubMed  Google Scholar 

  • Buser A. C.; Gass-Handel E. K.; Wyszomierski S. L. et al. Progesterone receptor repression of prolactin/signal transducer and activator of transcription 5-mediated transcription of the (β)-casein gene in mammary epithelial cells. J Mol Endocrinol 21(1): 106–125; 2007.

    CAS  Google Scholar 

  • Cheng S.; Chen G. Q.; Leski M. et al. The effect of D, L-beta-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27(20): 3758–3765; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G. B.; Reichenbach P.; Schindler U. et al. DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem 276(9): 6675–6688; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Fafournoux P.; Bruhat A.; Jousse C. Amino acid regulation of gene expression. Biochem 351: 1–12; 2000.

    Article  CAS  Google Scholar 

  • Finil M.; Torricellil P.; Giavaresil G. et al. Effect of L-lysine and L-arginine on primary osteoblast cultures from normal and osteopenic rats. Biomed Pharmacother 55: 213–220; 2001.

    Article  Google Scholar 

  • Frank D. A. Targeting transcription factors for cancer therapy. Drugs 12(1): 29–33; 2009.

    CAS  Google Scholar 

  • Iavnilovitch E.; Groner B.; Barash I. Overexpression and forced activation of Stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol Cancer Res 1(1): 32–474; 2002.

    PubMed  CAS  Google Scholar 

  • Jump D. B.; Clarke S. D. Regulation of gene expression by dietary fat. Annu Rev Nutr 19: 63–90; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kuljeet S.; Richard A. E.; Kara M. S. et al. Epigenetic regulation of milk production in dairy cows. J Mammary Gland Biol Neoplasia 15: 101–112; 2010.

    Article  Google Scholar 

  • Liu H. Y.; Yang J. Y.; Wu H. H. et al. Effects of methionine and its ratio to lysine on expression of αs1-casein gene in cultured bovine mammary epithelial cells. Journal of Animal and Feed Sciences 16(Supp l. 2): 330–334; 2007.

    Google Scholar 

  • Livak K. J.; Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) Method. Methods 25(4): 402–408; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mercier J. C.; Vilotte J. L. Structure and function of milk protein genes. J Dairy Sci 76(10): 3079–3098; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M. T.; Cheon Y.; Li Y. et al. Mechanisms of regulation of gene expression by fatty acids. Chemistry and Materials Sci 39(11): 1077–1083; 2004.

    CAS  Google Scholar 

  • Nanbu-wakao R.; Morikawa Y.; Matsumura I. et al. Stimulation of 3T3-L1 adipogenesis by signal transducer and activator of transcription 5. Molecular Endocrinology 16(7): 1565–1576; 2002.

  • Paukku K.; Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine & Growth Factor Reviews 15: 435–445; 2004.

    Article  CAS  Google Scholar 

  • Reichenstein M.; Rauner G.; Barash I. Conditional repression of STAT5 expression during lactation reveals its exclusive roles in mammary gland morphology, milk-protein gene expression, and neonate growth. Mol Reprod Dev; 2011. doi:10.1002/mrd.21345.

  • Rutter G. A.; Tavaré J. M.; Palmer D. G. Regulation of mammalian gene expression by glucose. News Physiol Sci 15(3): 149–152; 2000.

    PubMed  CAS  Google Scholar 

  • Sarah J. S.; Sandra Z. H.; Suan E. C. Signal transducer and activator of transcription 5a mediates mammary ductal branching and proliferation in the nulliparous mouse. Endocrinology 6: 2876–2885; 2010.

    Google Scholar 

  • Schuster G. U. Nutrients and gene expression. Nutritional genomics: discovering the path to personalized nutrition; 2006. doi:10.1002/0471781797.ch7.

  • Shan L.; Yu M.; Clark B. D. et al. Possible role of Stat5a in rat mammary gland carcinogenesis. Breast Cancer Res Treat 88(3): 263–72; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Shillingford J. M.; Hennighausen L. Experimental mouse genetics-answering fundamental questions about mammary gland biology. J. Trends Endocrinol Metab 12(9): 402–408; 2001.

    Article  CAS  Google Scholar 

  • Singh K.; Erdman R. A.; Swanson K. M. et al. Epigenetic regulation of milk production in dairy cows. J Mammary Gland Biol Neoplasia 15: 101–112; 2010.

    Article  PubMed  Google Scholar 

  • Steven M. A.; Rudolph M. C.; McManaman J. L. et al. Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Research 9(1): 204–212; 2007.

    Article  Google Scholar 

  • Tong H. L.; Gao X. J.; Li Q. Z. et al. Metabolic regulation on mammary gland epithelial cells of dairy cow by galactopoietic compound isolated from Vaccariae segetalis. Agricultural Sciences in China 10(7): 1106–1116; 2011.

    Article  CAS  Google Scholar 

  • Wagner K. U.; Rui H. Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia 13(1): 93–103; 2007.

    Article  Google Scholar 

  • Wan Z. Y.; Tong H. L.; Gao X. J. et al. Influence on cellular signal transduction pathway in dairy cow mammary gland epithelial cells by galactopoietic compound isolated from Vaccariae segetalis. Agricultural Sciences in China 10(4): 619–930; 2011.

    Article  CAS  Google Scholar 

  • Watson C. J. Stat transcription factors in mammary gland development and tumorigenesis. J Mammary Gland BiolNeoplasia 6(1): 115–127; 2001.

    Article  CAS  Google Scholar 

  • Yang X. X.; Zeng X. Q.; Ji Y. P. et al. Effects of sodium nitrate and sodium acetate concentrations on the growth and fatty acid composition of Brachiomonas submarina. Journal of Ocean University of Qing dao 2(1): 75–78; 2003.

    CAS  Google Scholar 

  • Zhang N.; Li Q. Z.; Gao X. J. et al. Protential role of adenosine monophosphate-activated protein kinase in regulation of energy metabolism in dairy goat mammary epithelial cells. J Dairy Sci 94(1): 218–222; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Zhao K.; Liu H. Y.; Zhou M. M. Establishment and characterization of a lactating bovine mammary epithelial cell model for the study of milk synthesis. Cell Biology International 34(7): 717–721; 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the Major State Basic Research Development Program of China (973 Program, no. 2011CB100804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Jun Gao.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.F., Li, M., Li, Q.Z. et al. Stat5a increases lactation of dairy cow mammary gland epithelial cells cultured in vitro. In Vitro Cell.Dev.Biol.-Animal 48, 554–561 (2012). https://doi.org/10.1007/s11626-012-9545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9545-5

Keywords

Navigation