Skip to main content
Log in

In vitro effect of peas, Pisum pisum, and chickpeas, Cicer arietinum, on the immune system of gilthead seabream, Sparus aurata

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The future for a sustainable aquaculture relies on the formulation of feed including alternatives to fish meal and fish oil that do not impair fish growth and that improve fish health status. Grain legumes such as field peas and chickpeas offer good sources of proteins, carbohydrates, fibers, vitamins, and minerals. The effect of peas and chickpeas on the immune system of seabream was assessed in vitro in order to detect any potential immunosuppressing problem. Peas was determined to be a better fishmeal alternative than chickpeas as they induced higher respiratory burst measured by the nitro blue tetrazolium assay and primed the Phorbol 12-myristate 13-acetate (PMA)-stimulated intracellular respiratory burst whereas chickpeas neither directly stimulated respiratory burst nor primed it. However, when the intra- and extracellular respiratory burst activities were taken into account, high concentrations of peas inhibited the zymosan- and PMA-triggered chemiluminescence. This apparent reduction of the production of reactive oxygen species may reflect in fact the antioxidant activity of legumes. This, together with the absence of effect on the phagocytosis activity, suggested that peas are not immunosuppressing gilthead seabream. Further in vivo studies preferably comporting a bacterial challenge will have to ascertain the absence of immunosuppressing effect of these legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Adamidou S.; Nengas I.; Henry M. et al. Effects of dietary inclusion of peas, chickpeas and faba beans on growth, feed utilization and health of gilthead seabream (Sparus aurata). Aquac. Nutr. 17: e288–e296; 2011.

    Article  Google Scholar 

  • Ardó L.; Yin G.; Xu P. et al. Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Aquaculture 275: 26–33; 2008.

    Article  Google Scholar 

  • Aruoma O. I.; Halliwell B.; Dizdaroglu M. Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase. J. Biol. Chem. 264: 13024–13028; 1989.

    PubMed  CAS  Google Scholar 

  • Daels-Rakotoarison D. A.; Gressier B.; Trotin F. et al. Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother. Res. 16: 157–161; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dalmo R. A.; Seljelid R. The immunomodulatory effect of LPS, laminaran and sulphated laminaran [β (1,3)-d-glucan] on Atlantic salmon, Salmo salar L., macrophages in vitro. J. Fish Dis. 18: 175–185; 1995.

    Article  CAS  Google Scholar 

  • Drakeford B.; Pascoe S. Substitutability of fishmeal and fish oil in diets for salmon and trout: a meta-analysis. Aquac. Econ. Manag. 12: 155–175; 2008.

    Article  Google Scholar 

  • Dügenci S. K.; Arda N.; Candan A. Some medicinal plants as immunostimulant for fish. J. Ethnopharmacol. 88: 99–106; 2003.

    Article  PubMed  Google Scholar 

  • El-Sayed A.-F. M.; Tacon A. G. J. Fishmeal replacers for tilapia: a review. Cah. Options Mediterraneennes 22: 205–224; 1997.

    Google Scholar 

  • Engstad R. E.; Robertson B. Effect of structurally different yeast β-glucans on immune responses in Atlantic salmon (Salmo salar L.). J. Mar. Biotechnol. 3: 203–207; 1995.

    CAS  Google Scholar 

  • Gabriel I.; Lessire M.; Juin H. et al. Variation in seed protein digestion of different pea (Pisum sativum L.) genotypes by cecectomized broiler chickens: 1. Endogenous amino acid losses, true digestibility and in vitro hydrolysis of proteins. Livest. Sci. 113: 251–261; 2008.

    Article  Google Scholar 

  • Hardy R. W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac. Res. 41: 770–776; 2010.

    Article  CAS  Google Scholar 

  • Harikrishnan R.; Balasundaram C.; Dharaneedharan S. et al. Effect of plant active compounds on immune response and disease resistance in Cirrhina mrigala infected with fungal fish pathogen, Aphanomyces invadans. Aquac. Res. 40: 1170–1181; 2009a.

    Article  CAS  Google Scholar 

  • Harikrishnan R.; Balasundaram C.; Kim M. C. et al. Innate immune response and disease resistance in Carassius auratus by triherbal solvent extracts. Fish Shellfish Immunol. 27: 508–515; 2009b.

    Article  PubMed  CAS  Google Scholar 

  • Henry M. A.; Alexis M. N. Effects of in vitro lactoferricin and lactoferrin on the head kidney cells of European sea bass (Dicentrarchus labrax, L.). Vet. Immunol. Immunopathol. 130: 236–242; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Henry M. A.; Alexis M. N.; Fountoulaki E. et al. Effects of a natural parasitical infection (Lernanthropus kroyeri) on the immune system of European sea bass, Dicentrarchus labrax L. Parasite Immunol. 31: 729–740; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Jang S. I.; Marsden M. J.; Kim Y. G. et al. The effect of glycyrrhizin on rainbow trout, Oncorhynchus mykiss (Walbaun), leucocyte responses. J. Fish Dis. 18: 307–315; 1995.

    Article  CAS  Google Scholar 

  • Jezierny D.; Mosenthin R.; Bauer E. The use of grain legumes as a protein source in pig nutrition: a review. Anim. Feed Sci. Technol. 157: 111–128; 2010.

    Article  CAS  Google Scholar 

  • Jian J.; Wu Z. Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture 218: 1–9; 2003.

    Article  Google Scholar 

  • Jian J.; Wu Z. Influences of traditional Chinese medicine on non-specific immunity of Jian Carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 16: 185–191; 2004.

    Article  PubMed  Google Scholar 

  • Jørgensen J. B.; Robertsen B. Yeast [beta]-glucan stimulates respiratory burst activity of Atlantic salmon (Salmo salar L.) macrophages. Dev. Comp. Immunol. 19: 43–57; 1995.

    Article  PubMed  Google Scholar 

  • Kim K. J.; Jang S. I.; Marsden M. J. et al. Effect of glycyrrhizin on rainbow trout Oncorhynchus mykiss leukocyte responses. J. Korean Soc. Microbiol. 33: 263–271; 1998.

    Google Scholar 

  • Kim K. H.; Hwang Y. J.; Bai S. C. Resistance to Vibrio alginolyticus in juvenile rockfish (Sebastes schlegeli) fed diets containing different doses of aloe. Aquaculture 180: 13–21; 1999.

    Article  Google Scholar 

  • Kim Y.-H.; Kim Y.; Cho E. et al. Alterations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweetpotato. Phytochemistry 65: 2471–2476; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kudrenko B.; Snape N.; Barnes A. C. Linear and branched β(1–3) d-glucans activate but do not prime teleost macrophages in vitro and are inactivated by dilute acid: Implications for dietary immunostimulation. Fish Shellfish Immunol. 26: 443–450; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lima J. E.; Sampaio A. L. F.; Henriques M. G. M. O. et al. Lymphocyte activation and cytokine production by Pisum sativum agglutinin (PSA) in vivo and in vitro. Immunopharmacology 41: 147–155; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Logambal S. M.; Michael R. D. Immunostimulatory effect of Azadirachtin in Oreochromis mossambicus (Peters). Indian J. Exp. Biol. 38: 1092–1096; 2000.

    PubMed  CAS  Google Scholar 

  • Logambal S. M.; Michael R. D. Azadirachtin—an immunostimulant for Oreochromis mossambicus (Peters). J. Aquacult. Trop. 16: 339–347; 2001.

    Google Scholar 

  • Miller M. R.; Nichols P. D.; Carter C. G. N-3 Oil sources for use in aquaculture alternatives to the unsustainable harvest of wild fish. Nutr. Res. Rev. 21: 85–96; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Moncada S.; Palmer R. M. J.; Higgs E. A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43: 109–142; 1991.

    PubMed  CAS  Google Scholar 

  • Naylor R. L.; Hardy R. W.; Bureau D. P. et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. U. S. A. 106: 15103–15110; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Nikolopoulou D.; Grigorakis K.; Stasini M. et al. Differences in chemical composition of field pea (Pisum sativum) cultivars: effects of cultivation area and year. Food Chem. 103: 847–852; 2007.

    Article  CAS  Google Scholar 

  • Nikoskelainen S.; Verho S.; Airas K. et al. Adhesion and ingestion activities of fish phagocytes induced by bacterium Aeromonas salmonicida can be distinguished and directly measured from highly diluted whole blood of fish. Dev. Comp. Immunol. 29: 525–537; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya M.; Hatta H.; Fujiki M. et al. Enhancement of chemotactic activity of yellowtail (Seriola quinqueradiata) leucocytes by oral administration of Quillaja saponin. Fish Shellfish Immunol. 5: 325–327; 1995.

    Article  Google Scholar 

  • Pereira T. G.; Oliva-Teles A. Preliminary evaluation of pea seed meal in diets for gilthead seabream (Sparus aurata) juveniles. Aquac. Res. 33: 1183–1189; 2002.

    Article  CAS  Google Scholar 

  • Prusty A. K.; Sahu N. P.; Pal A. K. et al. Effect of dietary tannin on growth and haemato-immunological parameters of Labeo rohita (Hamilton) fingerlings. Anim. Feed Sci. Technol. 136: 96–108; 2007.

    Article  CAS  Google Scholar 

  • Racine R. A.; Deckelbaum R. J. Sources of the very-long-chain unsaturated omega-3 fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Curr. Opin. Clin. Nutr. Metab. Care 10: 123–128; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rook G. A. W.; Steele J.; Umar S. et al. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by γ-interferon. J. Immunol. Methods 82: 161–167; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Roy F.; Boye J. I.; Simpson B. K. Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res. Int. 43: 432–442; 2010.

    Article  CAS  Google Scholar 

  • Siwicki A. K. Immunostimulating influence of levamisole on non-specific immunity in carp (C. carpio). Dev. Comp. Immunol. 13: 87–91; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Siwicki A. K.; Anderson D. P.; Rumsey G. L. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol. 41: 125–139; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Stone D. A. J. Dietary carbohydrate utilization by fish. Rev. Fish. Sci. 11: 337–369; 2003.

    Article  CAS  Google Scholar 

  • Tacon A. G. J. Feed ingredients for carnivorous fish species: alternatives to fishmeal and other fishery resources. FAO Fish. Circ. 881: 39; 1994.

    Google Scholar 

  • Van Barneveld S. L. Chemical and physical characteristics of grains related to variability in energy and amino acid availability in ruminants: a review. Aust. J. Agric. Res. 50: 651–666; 1999.

    Article  Google Scholar 

  • Vasconcelos I. M.; Oliveira J. T. A. Antinutritional properties of plant lectins. Toxicon 44: 385–403; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Vasta G. R.; Nita-Lazar M.; Giomarelli B. et al. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. Dev. Comp. Immunol. 35: 1388–1399; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Vidal-Valverde C.; Frias J.; Hernandez A. et al. Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum) seeds. J. Sci. Food Agric. 83: 298–306; 2003.

    Article  CAS  Google Scholar 

  • Wang N.; Daun J. K. Effect of variety and crude protein content on nutrients and certain antinutrients in field peas (Pisum sativum). J. Sci. Food Agric. 84: 1021–1029; 2004.

    Article  CAS  Google Scholar 

  • Watanuki H.; Gushiken Y.; Takahashi A. et al. In vitro modulation of fish phagocytic cells by β-endorphin. Fish Shellfish Immunol. 10: 203–212; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Yin G.; Ardo L.; Thompson K. D. et al. Chinese herbs (Astragalus radix and Ganoderma lucidum) enhance immune response of carp, Cyprinus carpio, and protection against Aeromonas hydrophila. Fish Shellfish Immunol. 26: 140–145; 2009.

    Article  PubMed  Google Scholar 

  • Yin G.; Wiegertjes G.; Li Y. et al. Effect of Astragalus radix on proliferation and nitric oxide production of head kidney macrophages in Cyprinus carpio: an in vitro study. J. Fish. China 28: 628–632; 2004.

    Google Scholar 

  • Yuan C.; Li D.; Chen W. et al. Administration of a herbal immunoregulation mixture enhances some immune parameters in carp (Cyprinus carpio). Fish Physiol. Biochem. 33: 93–101; 2007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Henry.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, M.A., Nikolopoulou, D. & Alexis, M.N. In vitro effect of peas, Pisum pisum, and chickpeas, Cicer arietinum, on the immune system of gilthead seabream, Sparus aurata . In Vitro Cell.Dev.Biol.-Animal 48, 407–412 (2012). https://doi.org/10.1007/s11626-012-9528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9528-6

Keywords

Navigation