Skip to main content
Log in

Collagen scaffolds with or without the addition of RGD peptides support cardiomyogenesis after aggregation of mouse embryonic stem cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cell-based cardiac muscle repair using tissue-engineered scaffolds is an attractive prospective treatment option for patients suffering from heart disease. In this study, our aim was to characterize mouse ES cell-derived cardiomyocytes growing on collagen I/III scaffolds, modified with the adhesion peptides arginine-glycine-aspartic acid (RGD). Mouse ES-derived embryoid bodies (EBs) differentiated efficiently into beating cardiomyocytes on the collagen scaffolds. QPCR analysis and immunofluorescent staining showed that cardiomyocytes expressed cardiac muscle-related transcripts and proteins. Analysis of cardiomyocytes by electron microscopy identified muscle fiber bundles and Z bands, typical of ES-derived cardiomyocytes. No differences were detected between the collagen + RGD and collagen control scaffolds. ES cells that were not differentiated as EBs prior to seeding on the scaffold, did not differentiate into cardiomyocytes. These results indicate that a collagen I/III scaffold supports cardiac muscle development and function after EB formation, and that this scaffold appears suitable for future in vivo testing. The addition of the RGD domain to the collagen scaffold did not improve cardiomyocyte development or viability, indicating that RGD signaling to integrins was not a rate-limiting event for cardiomyogenesis from EBs seeded on a collagen scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Al Madhoun A. S.; Mehta V.; Li G.; Figeys D.; Wiper-Bergeron N.; Skerjanc I. S. Skeletal myosin light chain kinase regulates skeletal myogenesis by phosphorylation of mef2c. EMBO J 30(12): 2477–2489; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Baharvand H.; Hajheidari M.; Zonouzi R.; Ashtiani S. K.; Hosseinkhani S.; Salekdeh G. H. Comparative proteomic analysis of mouse embryonic stem cells and neonatal-derived cardiomyocytes. Biochem. Biophys. Res. Commun. 349(3): 1041–1049; 2006a.

    Article  PubMed  CAS  Google Scholar 

  • Baharvand H.; Piryaei A.; Rohani R.; Taei A.; Heidari M. H.; Hosseini A. Ultrastructural comparison of developing mouse embryonic stem cell- and in vivo-derived cardiomyocytes. Cell Biol. Int. 30(10): 800–807; 2006b.

    Article  PubMed  CAS  Google Scholar 

  • Blin G.; Nury D.; Stefanovic S.; Neri T.; Guillevic O.; Brinon B.; Bellamy V.; Rucker-Martin C.; Barbry P.; Bel A.; Bruneval P.; Cowan C.; Pouly J.; Mitalipov S.; Gouadon E.; Binder P.; Hagege A.; Desnos M.; Renaud J. F.; Menasche P.; Puceat M. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J. Clin. Invest. 120(4): 1034–1036; 2010.

    Article  Google Scholar 

  • Boateng S. Y.; Lateef S. S.; Mosley W.; Hartman T. J.; Hanley L.; Russell B. Rgd and yigsr synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes. Am. J. Physiol. Cell Physiol. 288(1): C30–C38; 2005.

    PubMed  CAS  Google Scholar 

  • Braam S. R.; Nauw R.; Ward-van O. D.; Mummery C.; Passier R. Inhibition of rock improves survival of human embryonic stem cell-derived cardiomyocytes after dissociation. Ann. N. Y. Acad. Sci. 1188: 52–57; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Carson A. E.; Barker T. H. Emerging concepts in engineering extracellular matrix variants for directing cell phenotype. Regen. Med. 4(4): 593–600; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chien J. C.; Chang E. P. Dynamic mechanical and rheo-optical studies of collagen and gelatin. Biopolymers 11(10): 2015–2031; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Chiu L. L.; Radisic M.; Vunjak-Novakovic G. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol. Biosci. 10(11): 1286–1301; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Choi D.; Lee H. J.; Jee S.; Jin S.; Koo S. K.; Paik S. S.; Jung S. C.; Hwang S. Y.; Lee K. S.; Oh B. In vitro differentiation of mouse embryonic stem cells: Enrichment of endodermal cells in the embryoid body. Stem Cells 23(6): 817–827; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dong X.; Wei X.; Yi W.; Gu C.; Kang X.; Liu Y.; Li Q.; Yi D. Rgd-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J. Mater. Sci. Mater. Med. 20(11): 2327–2336; 2009.

    Article  CAS  Google Scholar 

  • Fassler R.; Rohwedel J.; Maltsev V.; Bloch W.; Lentini S.; Guan K.; Gullberg D.; Hescheler J.; Addicks K.; Wobus A. M. Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J. Cell Sci. 109(Pt 13): 2989–2999; 1996.

    PubMed  Google Scholar 

  • Ferreira L. S.; Gerecht S.; Fuller J.; Shieh H. F.; Vunjak-Novakovic G.; Langer R. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28(17): 2706–2717; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Fomovsky G. M.; Thomopoulos S.; Holmes J. W. Contribution of extracellular matrix to the mechanical properties of the heart. J. Mol. Cell. Cardiol. 48(3): 490–496; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Guo X. M.; Zhao Y. S.; Chang H. X.; Wang C. Y.; E L. L.; Zhang X. A.; Duan C. M.; Dong L. Z.; Jiang H.; Li J.; Song Y.; Yang X. J. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113(18): 2229–2237; 2006.

    Article  PubMed  Google Scholar 

  • Hattori F.; Fukuda K. Strategies for ensuring that regenerative cardiomyocytes function properly and in cooperation with the host myocardium. Exp. Mol. Med. 42(3): 155–165; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Horton R. E.; Millman J. R.; Colton C. K.; Auguste D. T. Engineering microenvironments for embryonic stem cell differentiation to cardiomyocytes. Regen Med. 4(5): 721–732; 2009.

    Article  PubMed  Google Scholar 

  • Huang C. C.; Liao C. K.; Yang M. J.; Chen C. H.; Hwang S. M.; Hung Y. W.; Chang Y.; Sung H. W. A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch. Biomaterials 31(24): 6218–6227; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Imbeault S.; Gauvin L. G.; Toeg H. D.; Pettit A.; Sorbara C. D.; Migahed L.; DesRoches R.; Menzies A. S.; Nishii K.; Paul D. L.; Simon A. M.; Bennett S. A. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells. BMC Neurosci. 10: 13; 2009.

    Article  PubMed  Google Scholar 

  • Kattman S.; Witty A.; Gagliardi M.; Dubois N.; Niapour M.; Hotta A.; Ellis J.; Keller G. Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2): 228–240; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy K. A.; Porter T.; Mehta V.; Ryan S. D.; Price F.; Peshdary V.; Karamboulas C.; Savage J.; Drysdale T. A.; Li S. C.; Bennett S. A.; Skerjanc I. S. Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative beta-catenin. BMC Biol. 7: 67; 2009.

    Article  PubMed  Google Scholar 

  • Kraehenbuehl T. P.; Zammaretti P.; Van der Vlies A. J.; Schoenmakers R. G.; Lutolf M. P.; Jaconi M. E.; Hubbell J. A. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: Systematic modulation of a synthetic cell-responsive peg-hydrogel. Biomaterials 29(18): 2757–2766; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Laflamme M. A.; Chen K. Y.; Naumova A. V.; Muskheli V.; Fugate J. A.; Dupras S. K.; Reinecke H.; Xu C.; Hassanipour M.; Police S.; O’Sullivan C.; Collins L.; Chen Y.; Minami E.; Gill E. A.; Ueno S.; Yuan C.; Gold J.; Murry C. E. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25(9): 1015–1024; 2007.

    Article  PubMed  CAS  Google Scholar 

  • LaNasa S. M.; Bryant S. J. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. Acta. Biomater. 5(8): 2929–2938; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Li X.; Chen Y.; Scheele S.; Arman E.; Haffner-Krausz R.; Ekblom P.; Lonai P. Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J. Cell Biol. 153(4): 811–822; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Livak K. J.; Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta c(t)) method. Methods 25(4): 402–408; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lu S.;Li Y.;Liu S.;Wang H.;He W.;Zhou J.;Liu Z.;Zhang Y.;Lin Q.;Duan C.;Yang X.;Gao S.;Wang C. Engineered heart tissue graft derived from somatic-cell-nuclear-transferred embryonic stem cells improve myocardial performance in infarcted rat heart. J Cell Mol Med. 2010.

  • Marsano A.; Maidhof R.; Wan L. Q.; Wang Y.; Gao J.; Tandon N.; Vunjak-Novakovic G. Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs. Biotechnol. Prog. 26(5): 1382–1390; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Martinez E. C.; Kofidis T. Myocardial tissue engineering: The quest for the ideal myocardial substitute. Expert. Rev. Cardiovasc. Ther. 7(8): 921–928; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Melkoumian Z.; Weber J. L.; Weber D. M.; Fadeev A. G.; Zhou Y.; Dolley-Sonneville P.; Yang J.; Qiu L.; Priest C. A.; Shogbon C.; Martin A. W.; Nelson J.; West P.; Beltzer J. P.; Pal S.; Brandenberger R. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28(6): 606–610; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Menard C.; Hagege A. A.; Agbulut O.; Barro M.; Morichetti M. C.; Brasselet C.; Bel A.; Messas E.; Bissery A.; Bruneval P.; Desnos M.; Puceat M.; Menasche P. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet 366(9490): 1005–1012; 2005.

    Article  PubMed  Google Scholar 

  • Menasche P.; Alfieri O.; Janssens S.; McKenna W.; Reichenspurner H.; Trinquart L.; Vilquin J. T.; Marolleau J. P.; Seymour B.; Larghero J.; Lake S.; Chatellier G.; Solomon S.; Desnos M.; Hagege A. A. The myoblast autologous grafting in ischemic cardiomyopathy (magic) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation 117(9): 1189–1200; 2008.

    Article  PubMed  Google Scholar 

  • Myles J. L.; Burgess B. T.; Dickinson R. B. Modification of the adhesive properties of collagen by covalent grafting with RGD peptides. J. Biomater. Sci. Polym. Ed. 11(1): 69–86; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pacak C. A.; Cowan D. B. Fabrication of myogenic engineered tissue constructs. J. Vis. Exp. 1(27): 1137; 2009.

    Google Scholar 

  • Petrie T. A.; Capadona J. R.; Reyes C. D.; Garcia A. J. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials 27(31): 5459–5470; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Puceat M. Protocols for cardiac differentiation of embryonic stem cells. Methods 45(2): 168–171; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Radisic M.; Fast V. G.; Sharifov O. F.; Iyer R. K.; Park H.; Vunjak-Novakovic G. Optical mapping of impulse propagation in engineered cardiac tissue. Tissue Eng. Part A 15(4): 851–860; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Radisic M.; Yang L.; Boublik J.; Cohen R. J.; Langer R.; Freed L. E.; Vunjak-Novakovic G. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286(2): H507–H516; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Robey T. E.; Saiget M. K.; Reinecke H.; Murry C. E. Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol. 45(4): 567–581; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Rozen S.; Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365–386; 2000.

    PubMed  CAS  Google Scholar 

  • Sapir Y.; Kryukov O.; Cohen S. Integration of multiple cell–matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32(7): 1838–1847; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Savage J.; Conley A. J.; Blais A.; Skerjanc I. S. Sox15 and sox7 differentially regulate the myogenic program in p19 cells. Stem Cells 27(6): 1231–1243; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Schussler O.; Chachques J. C.; Mesana T. G.; Suuronen E. J.; Lecarpentier Y.; Ruel M. 3-dimensional structures to enhance cell therapy and engineer contractile tissue. Asian Cardiovasc Thorac Ann. 18(2): 188–198; 2010.

    PubMed  Google Scholar 

  • Schussler O.; Coirault C.; Louis-Tisserand M.; Al-Chare W.; Oliviero P.; Menard C.; Michelot R.; Bochet P.; Salomon D. R.; Chachques J. C.; Carpentier A.; Lecarpentier Y. Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nat. Clin. Pract. Cardiovasc Med. 6(3): 240–249; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Sepac A.; Sedlic F.; Si-Tayeb K.; Lough J.; Duncan S. A.; Bienengraeber M.; Park F.; Kim J.; Bosnjak Z. J. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology 113(4): 906–916; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Shachar M.;Tsur-Gang O.;Dvir T.;Leor J.;Cohen S. The effect of immobilized rgd peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 2010.

  • Shapira K.; Dikovsky D.; Habib M.; Gepstein L.; Seliktar D. Hydrogels for cardiac tissue regeneration. Biomed. Mater. Eng. 18(4–5): 309–314; 2008.

    PubMed  CAS  Google Scholar 

  • Stevens K. R.; Kreutziger K. L.; Dupras S. K.; Korte F. S.; Regnier M.; Muskheli V.; Nourse M. B.; Bendixen K.; Reinecke H.; Murry C. E. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl. Acad. Sci. U. S. A. 106(39): 16568–16573; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3: Appendix 3B; 2001.

  • Tsur-Gang O.; Ruvinov E.; Landa N.; Holbova R.; Feinberg M. S.; Leor J.; Cohen S. The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30(2): 189–195; 2009.

    Article  PubMed  CAS  Google Scholar 

  • van Laake L. W.; Passier R.; den Ouden K.; Schreurs C.; Monshouwer-Kloots J.; Ward-van O. D.; van Echteld C. J.; Doevendans P. A.; Mummery C. L. Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res. 3(2–3): 106–112; 2009.

    Article  PubMed  Google Scholar 

  • Vunjak-Novakovic G.; Tandon N.; Godier A.; Maidhof R.; Marsano A.; Martens T. P.; Radisic M. Challenges in cardiac tissue engineering. Tissue Eng. Part B Rev. 16(2): 169–187; 2010.

    Article  PubMed  Google Scholar 

  • Wang X.; Seed B. A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res. 31(24): e154; 2003.

    Article  PubMed  Google Scholar 

  • Wang X.; Wei G.; Yu W.; Zhao Y.; Yu X.; Ma X. Scalable producing embryoid bodies by rotary cell culture system and constructing engineered cardiac tissue with ES-derived cardiomyocytes in vitro. Biotechnol. Prog. 22(3): 811–818; 2006.

    Article  PubMed  Google Scholar 

  • Welt F. G.; Losordo D. W. Cell therapy for acute myocardial infarction: Curb your enthusiasm? Circulation 113(10): 1272–1274; 2006.

    Article  PubMed  Google Scholar 

  • Yao S.; Chen S.; Clark J.; Hao E.; Beattie G. M.; Hayek A.; Ding S. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl. Acad. Sci. U. S. A. 103(18): 6907–6912; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Yeo Y.; Geng W.; Ito T.; Kohane D. S.; Burdick J. A.; Radisic M. Photocrosslinkable hydrogel for myocyte cell culture and injection. J. Biomed. Mater. Res. B Appl. Biomater. 81(2): 312–322; 2007.

    PubMed  Google Scholar 

  • Yu J.; Du K. T.; Fang Q.; Gu Y.; Mihardja S. S.; Sievers R. E.; Wu J. C.; Lee R. J. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31(27): 7012–7020; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yu J.; Gu Y.; Du K. T.; Mihardja S.; Sievers R. E.; Lee R. J. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30(5): 751–756; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S.; Fukuda K. Cardiac regenerative medicine. Circ. J. 72(Suppl A): A49–A55; 2008.

    Article  PubMed  Google Scholar 

  • Zhang H. L.; Luo T. H.; Feng L.; Zhao Y.; Li W. Y.; Xu J.; Zhang Q.; Xu L. H.; Zheng S.; Li G.; Luo M. Microarray analysis of gene expression in men1 knockout embryoid body reveals genetic events involved in early mouse embryonic development. Biochem. Biophys. Res. Commun. 352(2): 456–462; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zhang M.; Suuronen E.; Sellke F.; Ruel M. Regenerative cell based therapy for the treatment of cardiac disease. In: Sellke F.; Del Nido P.; Swanson S. (eds) Sabiston and Spencer’s surgery of the chest. 8th ed. Saunders, Philadelphia; 2010.

    Google Scholar 

  • Zhang Z.; Li G.; Shi B. Physicochemical properties of collagen, gelatin, and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chemists 90: 23–38; 2006.

    Google Scholar 

  • Zimmermann W. H.; Cesnjevar R. Cardiac tissue engineering: Implications for pediatric heart surgery. Pediatr. Cardiol. 30(5): 716–723; 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Canadian Institute of Health Research (CIHR) to IS and MR (Grant 53277), and Ontario Graduate Scholarship (OGS) to JD. We thank Peter Rippstein and Junhui Tan at the Core Pathology Laboratory and Division of Cardiology, University of Ottawa Heart Institute, for performing the electron microscopic imaging and sample processing. We thank Dr. deBold at the University of Ottawa Heart Institute for his advice on the EM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona S. Skerjanc.

Additional information

Editor: T. Okamoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Five-day-old EBs grown until day 10 on the collagen (+RGD) and control scaffolds, and gelatin substrates differentiated more efficiently into beating cardiomyocytes than 3-day-old EBs or unaggregated cells. Higher levels of MHC, cardiac a actin, and Nkx2.5 transcripts were observed in cardiomyocytes aggregated for 5 d, when compared to unaggregated cells and 3-day-old mEBs grown on the substrates until day 10. Results are expressed relative to undifferentiated mES cells grown in monolayer, n = 3. (JPEG 73 kb)

High resolution image (TIFF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, J., Schussler, O., Al-Madhoun, A. et al. Collagen scaffolds with or without the addition of RGD peptides support cardiomyogenesis after aggregation of mouse embryonic stem cells. In Vitro Cell.Dev.Biol.-Animal 47, 653–664 (2011). https://doi.org/10.1007/s11626-011-9453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9453-0

Keywords

Navigation