Skip to main content

Advertisement

Log in

Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

This work describes the step-by-step development of a novel, serum-free, in vitro cell culture system resulting in the formation of robust, contracting, multinucleate myotubes from dissociated skeletal muscle cells obtained from the hind limbs of fetal rats. This defined system consisted of a serum-free medium formulation developed by the systematic addition of different growth factors as well as a nonbiological cell growth promoting substrate, N-1[3-(trimethoxysilyl) propyl] diethylenetriamine. Each growth factor in the medium was experimentally evaluated for its effect on myotube formation. The resulting myotubes were evaluated immunocytochemically using embryonic skeletal muscle, specifically the myosin heavy chain antibody. Based upon this analysis, we propose a new skeletal muscle differentiation protocol that reflects the roles of the various growth factors which promote robust myotube formation. Further observation noted that the proposed skeletal muscle differentiation technique also supported muscle–nerve coculture. Immunocytochemical evidence of nerve–muscle coculture has also been documented. Applications for this novel culture system include biocompatibility and skeletal muscle differentiation studies, understanding myopathies, neuromuscular disorders, and skeletal muscle tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alterio J.; Courtois Y.; Robelin J.; Bechet D.; Martelly I. Acidic and basic fibroblast growth factor mRNAs are expressed by skeletal muscle satellite cells. Biochem. Biophys. Res. Commun 1663: 1205–1512; 1990. doi:10.1016/0006-291X(90)90994-X.

    Article  PubMed  CAS  Google Scholar 

  • Anderson J. E.; Liu L.; Kardami E. Distinctive patterns of basic fibroblast growth factor (bFGF) distribution in degenerating and regenerating areas of dystrophic (mdx) striated muscles. Dev. Biol 1471: 96–109; 1991. doi:10.1016/S0012-1606(05)80010-7.

    Article  PubMed  CAS  Google Scholar 

  • Arnold H. H.; Winter B. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev 85: 539–544; 1998. doi:10.1016/S0959-437X(98)80008-7.

    Article  PubMed  CAS  Google Scholar 

  • Biesecker G. The complement SC5b-9 complex mediates cell adhesion through a vitronectin receptor. J. Immunol 1451: 209–214; 1990.

    PubMed  CAS  Google Scholar 

  • Bordet T.; Lesbordes J. C.; Rouhani S.; Castelnau-Ptakhine L.; Schmalbruch H.; Haase G.; Kahn A. Protective effects of cardiotrophin-1 adenoviral gene transfer on neuromuscular degeneration in transgenic ALS mice. Hum. Mol. Genet 1018: 1925–1933; 2001. doi:10.1093/hmg/10.18.1925.

    Article  PubMed  CAS  Google Scholar 

  • Brand-Saberi B. Genetic and epigenetic control of skeletal muscle development. Ann. Anat 1873: 199–207; 2005. doi:10.1016/j.aanat.2004.12.018.

    Article  PubMed  CAS  Google Scholar 

  • Brand-Saberi B.; Christ B. Genetic and epigenetic control of muscle development in vertebrates. Cell Tissue Res 2961: 199–212; 1999. doi:10.1007/s004410051281.

    Article  PubMed  CAS  Google Scholar 

  • Brand T.; Butler-Browne G.; Fuchtbauer E. M.; Renkawitz-Pohl R.; Brand-Saberi B. EMBO Workshop Report: Molecular genetics of muscle development and neuromuscular diseases Kloster Irsee, Germany, September 26–October 1, 1999. Embo J 199: 1935–1941; 2000. doi:10.1093/emboj/19.9.1935.

    Article  PubMed  CAS  Google Scholar 

  • Burgess W. H.; Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem 58: 575–606; 1989. doi:10.1146/annurev.bi.58.070189.003043.

    Article  PubMed  CAS  Google Scholar 

  • Carrasco D. I.; English A. W. Neurotrophin 4/5 is required for the normal development of the slow muscle fiber phenotype in the rat soleus. J. Exp. Biol 206Pt 13: 2191–2200; 2003. doi:10.1242/jeb.00412.

    Article  PubMed  CAS  Google Scholar 

  • Chen J.; von Bartheld C. S. Role of exogenous and endogenous trophic factors in the regulation of extraocular muscle strength during development. Invest. Ophthalmol. Vis. Sci 4510: 3538–3545; 2004. doi:10.1167/iovs.04-0393.

    Article  PubMed  Google Scholar 

  • Choi-Lundberg D. L.; Bohn M. C. Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res. Dev. Brain Res 851: 80–88; 1995. doi:10.1016/0165-3806(94)00197-8.

    Article  PubMed  CAS  Google Scholar 

  • Christ B.; Brand-Saberi B. Limb muscle development. Int. J. Dev. Biol 467: 905–914; 2002.

    PubMed  CAS  Google Scholar 

  • Clegg C. H.; Linkhart T. A.; Olwin B. B.; Hauschka S. D. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell Biol 1052: 949–956; 1987. doi:10.1083/jcb.105.2.949.

    Article  PubMed  CAS  Google Scholar 

  • Das M.; Gregory C. A.; Molnar P.; Riedel L. M.; Wilson K.; Hickman J. J. A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures. Biomaterials 2724: 4374–4380; 2006. doi:10.1016/j.biomaterials.2006.03.046.

    Article  PubMed  CAS  Google Scholar 

  • Das M.; Molnar P.; Devaraj H.; Poeta M.; Hickman J. J. Electrophysiological and morphological characterization of rat embryonic motoneurons in a defined system. Biotechnol. Prog 196: 1756–1761; 2003. doi:10.1021/bp034076l.

    Article  PubMed  CAS  Google Scholar 

  • Das M.; Molnar P.; Gregory C.; Riedel L.; Jamshidi A.; Hickman J. J. Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials 2525: 5643–5647; 2004. doi:10.1016/j.biomaterials.2004.01.020.

    Article  PubMed  CAS  Google Scholar 

  • Das M.; Rumsey J. W.; Gregory C. A.; Bhargava N.; Kang J. F.; Molnar P.; Riedel L.; Guo X.; Hickman J. J. Embryonic motoneuron–skeletal muscle co-culture in a defined system. Neuroscience 1462: 481–488; 2007a. doi:10.1016/j.neuroscience.2007.01.068.

    Article  PubMed  CAS  Google Scholar 

  • Das M.; Wilson K.; Molnar P.; Hickman J. J. Differentiation of skeletal muscle and integration of myotubes with silicon microstructures using serum-free medium and a synthetic silane substrate. Nat. Protoc 27: 1795–1801; 2007b. doi:10.1038/nprot.2007.229.

    Article  PubMed  CAS  Google Scholar 

  • Dolcet X.; Soler R. M.; Gould T. W.; Egea J.; Oppenheim R. W.; Comella J. X. Cytokines promote motoneuron survival through the Janus kinase-dependent activation of the phosphatidylinositol 3-kinase pathway. Mol. Cell Neurosci 186: 619–631; 2001. doi:10.1006/mcne.2001.1058.

    Article  PubMed  CAS  Google Scholar 

  • Donovan M. J.; Hahn R.; Tessarollo L.; Hempstead B. L. Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat. Genet 142: 210–213; 1996. doi:10.1038/ng1096-210.

    Article  PubMed  CAS  Google Scholar 

  • Dutton E. K.; Uhm C. S.; Samuelsson S. J.; Schaffner A. E.; Fitzgerald S. C.; Daniels M. P. Acetylcholine receptor aggregation at nerve-muscle contacts in mammalian cultures: induction by ventral spinal cord neurons is specific to axons. J. Neurosci 1511: 7401–7416; 1995.

    PubMed  CAS  Google Scholar 

  • Golden J. P.; DeMaro J. A.; Osborne P. A.; Milbrandt J.; Johnson E. M. Jr. Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp. Neurol 1582: 504–528; 1999. doi:10.1006/exnr.1999.7127.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A. M.; Buscaglia M.; Ong M.; Baird A. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J. Cell Biol 1103: 753–765; 1990. doi:10.1083/jcb.110.3.753.

    Article  PubMed  CAS  Google Scholar 

  • Gullberg D.; Sjoberg G.; Velling T.; Sejersen T. Analysis of fibronectin and vitronectin receptors on human fetal skeletal muscle cells upon differentiation. Exp. Cell Res 2201: 112–123; 1995. doi:10.1006/excr.1995.1297.

    Article  PubMed  CAS  Google Scholar 

  • Hannon K.; Kudla A. J.; McAvoy M. J.; Clase K. L.; Olwin B. B. Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms. J. Cell. Biol 1326: 1151–1159; 1996. doi:10.1083/jcb.132.6.1151.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich G. A novel BDNF gene promoter directs expression to skeletal muscle. BMC Neurosci 4: 11; 2003. doi:10.1186/1471-2202-4-11.

    Article  PubMed  Google Scholar 

  • Henderson C. E.; Phillips H. S.; Pollock R. A.; Davies A. M.; Lemeulle C.; Armanini M.; Simmons L.; Moffet B.; Vandlen R. A.; Simpson L. C. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 2665187: 1062–1064; 1994. doi:10.1126/science.7973664.

    Article  PubMed  CAS  Google Scholar 

  • Hickman J. J.; Bhatia S. K.; Quong J. N.; Schoen P.; Stenger D. A.; Pike C. J.; Cotman C. W. Rational pattern design for in-vitro cellular networks using surface photochemistry. J. Vac. Sci. Technol. A 123: 607–616; 1994. doi:10.1116/1.578844.

    Article  CAS  Google Scholar 

  • Hornik C.; Brand-Saberi B.; Rudloff S.; Christ B.; Fuchtbauer E. M. Twist is an integrator of SHH, FGF, and BMP signaling. Anat. Embryol. (Berl) 2091: 31–39; 2004. doi:10.1007/s00429-004-0412-3.

    Article  CAS  Google Scholar 

  • Lesbordes J. C.; Bordet T.; Haase G.; Castelnau-Ptakhine L.; Rouhani S.; Gilgenkrantz H.; Kahn A. In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum. Mol. Genet 1114: 1615–1625; 2002. doi:10.1093/hmg/11.14.1615.

    Article  PubMed  CAS  Google Scholar 

  • Li L.; Olson E. N. Regulation of muscle cell growth and differentiation by the MyoD family of helix-loop-helix proteins. Adv. Cancer Res 58: 95–119; 1992. doi:10.1016/S0065-230X(08)60292-4.

    Article  PubMed  CAS  Google Scholar 

  • Lin L. F.; Doherty D. H.; Lile J. D.; Bektesh S.; Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 2605111: 1130–1132; 1993. doi:10.1126/science.8493557.

    Article  PubMed  CAS  Google Scholar 

  • Liu J.; Rumsey J. W.; Das M.; Molnar P.; Gregory C.; Riedel L.; Hickman J. J. Electrophysiological and immunocytochemical characterization of DRG neurons on an organosilane surface in serum-free medium. In Vitro Cell. Dev. Biol. Anim 445–6: 162–168; 2008. doi:10.1007/s11626-008-9097-x.

    Article  PubMed  CAS  Google Scholar 

  • Mitsumoto H.; Klinkosz B.; Pioro E. P.; Tsuzaka K.; Ishiyama T.; O’Leary R. M.; Pennica D. Effects of cardiotrophin-1 (CT-1) in a mouse motor neuron disease. Muscle Nerve 246: 769–777; 2001. doi:10.1002/mus.1068.

    Article  PubMed  CAS  Google Scholar 

  • Moore J. W.; Dionne C.; Jaye M.; Swain J. L. The mRNAs encoding acidic FGF, basic FGF and FGF receptor are coordinately downregulated during myogenic differentiation. Development 1113: 741–748; 1991.

    PubMed  CAS  Google Scholar 

  • Morrow N. G.; Kraus W. E.; Moore J. W.; Williams R. S.; Swain J. L. Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning. J. Clin. Invest 856: 1816–1820; 1990. doi:10.1172/JCI114640.

    Article  PubMed  CAS  Google Scholar 

  • Mousavi K.; Parry D. J.; Jasmin B. J. BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am. J. Physiol. Cell. Physiol 2871: C22–C29; 2004. doi:10.1152/ajpcell.00583.2003.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa J.; Sakuma K.; Sorimachi Y.; Yoshimoto K.; Yasuhara M. Increase of Cardiotrophin-1 immunoreactivity in regenerating and overloaded but not denervated muscles of rats. Neuropathology 251: 54–65; 2005. doi:10.1111/j.1440-1789.2004.00587.x.

    Article  PubMed  Google Scholar 

  • Nugent M. A.; Iozzo R. V. Fibroblast growth factor-2. Int. J. Biochem. Cell. Biol 322: 115–120; 2000. doi:10.1016/S1357-2725(99)00123-5.

    Article  PubMed  CAS  Google Scholar 

  • Oakley R. A.; Lefcort F. B.; Clary D. O.; Reichardt L. F.; Prevette D.; Oppenheim R. W.; Frank E. Neurotrophin-3 promotes the differentiation of muscle spindle afferents in the absence of peripheral targets. J. Neurosci 1711: 4262–4274; 1997.

    PubMed  CAS  Google Scholar 

  • Ohuchi H.; Noji S. Fibroblast-growth-factor-induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation. Cell Tissue Res 2961: 45–56; 1999. doi:10.1007/s004410051265.

    Article  PubMed  CAS  Google Scholar 

  • Olson E. Activation of muscle-specific transcription by myogenic helix-loop-helix proteins. Symp. Soc. Exp. Biol 46: 331–341; 1992a.

    PubMed  CAS  Google Scholar 

  • Olson E. N. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol 1542: 261–272; 1992b. doi:10.1016/0012-1606(92)90066-P.

    Article  PubMed  CAS  Google Scholar 

  • Olson E. N.; Perry W. M. MyoD and the paradoxes of myogenesis. Curr. Biol 21: 35–37; 1992. doi:10.1016/0960-9822(92)90429-E.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim R. W.; Wiese S.; Prevette D.; Armanini M.; Wang S.; Houenou L. J.; Holtmann B.; Gotz R.; Pennica D.; Sendtner M. Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. J. Neurosci 214: 1283–1291; 2001.

    PubMed  CAS  Google Scholar 

  • Peroulakis M. E.; Forger N. G. Ciliary neurotrophic factor increases muscle fiber number in the developing levator ani muscle of female rats. Neurosci. Lett 2962–3: 73–76; 2000. doi:10.1016/S0304-3940(00)01649-9.

    Article  PubMed  CAS  Google Scholar 

  • Ravenscroft M. S.; Bateman K. E.; Shaffer K. M.; Schessler H. M.; Jung D. R.; Schneider T. W.; Montgomery C. B.; Custer T. L.; Schaffner A. E.; Liu Q. Y.; Li Y. X.; Barker J. L.; Hickman J. J. Developmental neurobiology implications from fabrication and analysis of hippocampal neuronal networks on patterned silane-modified surfaces. J. Am. Chem. Soc 12047: 12169–12177; 1998. doi:10.1021/ja973669n.

    Article  CAS  Google Scholar 

  • Scaal M.; Bonafede A.; Dathe V.; Sachs M.; Cann G.; Christ B.; Brand-Saberi B. SF/HGF is a mediator between limb patterning and muscle development. Development 12621: 4885–4893; 1999.

    PubMed  CAS  Google Scholar 

  • Schaffner A. E.; Barker J. L.; Stenger D. A.; Hickman J. J. Investigation of the factors necessary for growth of hippocampal neurons in a defined system. Journal of Neuroscience Methods 621–2: 111–119; 1995. doi:10.1016/0165-0270(95)00063-1.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz J. J.; Chakraborty T.; Martin J.; Zhou J. M.; Olson E. N. The basic region of myogenin cooperates with two transcription activation domains to induce muscle-specific transcription. Mol. Cell. Biol 121: 266–275; 1992.

    PubMed  CAS  Google Scholar 

  • Sheng Z.; Pennica D.; Wood W. I.; Chien K. R. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 1222: 419–428; 1996.

    PubMed  CAS  Google Scholar 

  • Simon M.; Porter R.; Brown R.; Coulton G. R.; Terenghi G. Effect of NT-4 and BDNF delivery to damaged sciatic nerves on phenotypic recovery of fast and slow muscles fibres. Eur. J. Neurosci 189: 2460–2466; 2003. doi:10.1046/j.1460-9568.2003.02978.x.

    Article  PubMed  Google Scholar 

  • Spargo B. J.; Testoff M. A.; Nielsen T. B.; Stenger D. A.; Hickman J. J.; Rudolph A. S. Spatially controlled adhesion, spreading, and differentiation of endothelial-cells on self-assembled molecular monolayers. Proc. Natl. Acad. Sci. U. S. A 9123: 11070–11074; 1994. doi:10.1073/pnas.91.23.11070.

    Article  PubMed  CAS  Google Scholar 

  • Stenger D. A.; Georger J. H.; Dulcey C. S.; Hickman J. J.; Rudolph A. S.; Nielsen T. B.; McCort S. M.; Calvert J. M. Coplanar molecular assemblies of aminoalkylsilane and perfluorinated alkylsilane—characterization and geometric definition of mammalian-cell adhesion and growth. J. Am. Chem. Soc 11422: 8435–8442; 1992. doi:10.1021/ja00048a013.

    Article  CAS  Google Scholar 

  • Yang L. X.; Nelson P. G. Glia cell line-derived neurotrophic factor regulates the distribution of acetylcholine receptors in mouse primary skeletal muscle cells. Neuroscience 1283: 497–509; 2004. doi:10.1016/j.neuroscience.2004.06.067.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The F1.652 monoclonal antibody developed by Helan Blau was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA. This work was supported by DARPA grant DARPA-ITO N65236-01-1-7400 and NIH grant number 5R01 NS 050452. The initial experiments for this work were performed in the Bioengineering Department at Clemson University, Clemson, SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Hickman.

Additional information

Editor: J. Denry Sato

Mainak Das and John W Rumsey contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, M., Rumsey, J.W., Bhargava, N. et al. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell.Dev.Biol.-Animal 45, 378–387 (2009). https://doi.org/10.1007/s11626-009-9192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9192-7

Keywords

Navigation