Skip to main content
Log in

A subset of myeloid dendritic cells derived from peripheral blood monocytes represented a predominant subset characterized by their potential tumor-inhibiting activity

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Besides their role as potent antigen-presenting cells, myeloid dendritic cells (MDCs), but not plasmacytoid dendritic cells (PDCs), have been reported to have cytotoxic or cytostatic activity on some tumor cells. In this article, we analyzed the tumoristatic potential of a distinct peripheral blood monocyte-derived MDC subset which co-expressed PDC-specific marker CD123. CD123+ MDCs represented a subset of small-sized DCs and accounted for 45–60% of peripheral blood monocytes cultured with granulocyte-macrophage colony-stimulating factor and interleukine-4 (IL-4) for 7 d. They exhibited more significant antiproliferative activity toward hematological tumor cell lines of Jurkat, HL60, and myelodysplastic syndromes over-leukemia than CD123 MDCs even at a low effecter/target ratio. Pretreatment of MDC and their supernatant with TRAIL-R2:Fc significantly reduced the tumoristatic effect of CD123+ MDCs but not of CD123 MDCs and their supernatant. CD123+ MDCs expressed higher level of cytoplasmic TNF-α-related apoptosis-inducing ligand (TRAIL) than CD123 MDCs, whereas both expressed very little surface and soluble TRAIL. These results reveal that CD123+ cells represented a predominant subset of MDCs generated from peripheral blood monocytes in vitro, characterized by their potential tumoristic activity partially via cytoplasmic TRAIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Banchereau J.; Steinman R. M. Dendritic cells and the control of immunity. Nature 392: 245–252; 1998. doi:10.1038/32588.

    Article  PubMed  CAS  Google Scholar 

  • Chapoval A. I.; Tamada K.; Chen L. In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood 95: 2346–2351; 2000.

    PubMed  CAS  Google Scholar 

  • Fanger N. A.; Maliszewski C. R.; Schooley K.; Griffith T. S. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J. Exp. Med. 190: 1155–1164; 1999. doi:10.1084/jem.190.8.1155.

    Article  PubMed  CAS  Google Scholar 

  • Grouard G.; Rissoan M. C.; Filgueira L.; Durand I.; Banchereau J.; Liu Y. J. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185: 1101–1111; 1997. doi:10.1084/jem.185.6.1101.

    Article  PubMed  CAS  Google Scholar 

  • Ho C. S.; Munster D.; Pyke C. M.; Hart D. N.; López J. A. Spontaneous generation and survival of blood dendritic cells in mononuclear cell culture without exogenous cytokines. Blood 99: 2897–2904; 2002. doi:10.1182/blood.V99.8.2897.

    Article  PubMed  CAS  Google Scholar 

  • Josien R.; Heslan M.; Soulillou J. P.; Cuturi M. C. Rat spleen dendritic cells express natural killer cell receptor protein 1 (NKR-P1) and have cytotoxic activity to select targets via a Ca2+-dependent mechanism. J. Exp. Med. 186: 467–472; 1997. doi:10.1084/jem.186.3.467.

    Article  PubMed  CAS  Google Scholar 

  • Karanikas V.; Lodding J.; Maino V. C.; McKenzie I. F. Flow cytometric measurement of intracellular cytokines detects immune responses in MUC1 immunotherapy. Clin. Cancer Res. 6: 829–837; 2000.

    PubMed  CAS  Google Scholar 

  • Labeur M. S.; Roters B.; Pers B.; Mehlinger T. A.; Schwarz T.; Grabbe S. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 162: 168–175; 1999.

    PubMed  CAS  Google Scholar 

  • Markowicz S.; Engleman E. G. Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J. Clin. Invest. 85: 955–961; 1990. doi:10.1172/JCI114525.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S.; Ohnishi K.; Yoshida H.; Shinjo K.; Takeshita A.; Tohyama K.; Ohno R.; Koide Y. Retrovirus-mediated gene transfer of granulocyte colony-stimulating factor receptor (G-CSFR) cDNA into MDS cells and induction of their differentiation by G-CSF. Cytokines Cell Mol. Ther. 6: 61–70; 2000. doi:10.1080/13684730050515787.

    Article  PubMed  CAS  Google Scholar 

  • Nestle F. O.; Alijagic S.; Gilliet M.; Sun Y.; Grabbe S.; Dummer R.; Burg G.; Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate- pulsed dendritic cells. Nat. Med. 4: 328–332; 1998. doi:10.1038/nm0398-328.

    Article  PubMed  CAS  Google Scholar 

  • Reid C. D.; Stachpoole A.; Meager A.; Tikerpae J. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. Reid CDL. J. Immunol. 149: 2681–2688; 1992.

    PubMed  CAS  Google Scholar 

  • Rissoan M. C.; Soumelis V.; Kadowaki N.; Grouard G.; Briere F.; de Waal Malefyt R.; Liu Y. J. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283: 1183–1186; 1999. doi:10.1126/science.283.5405.1183.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz M.; Zhao S.; Deuse Y.; Schäkel K.; Wehner R.; Wöhner H.; Hölig K.; Wienforth F.; Kiessling A.; Bornhäuser M.; Temme A.; Rieger M. A.; Weigle B.; Bachmann M.; Rieber E. P. Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. J. Immunol. 174: 4127–4134; 2005.

    PubMed  CAS  Google Scholar 

  • Shi J.; Ikeda K.; Fujii N.; Kondo E.; Shinaqawa K.; Ishimaru F.; Kaneda K.; Tanimoto M.; Li X.; Pu Q. Activated human umbilical cord blood dendritic cells kill tumor cells without damaging normal hematological progenitor cells. Cancer Sci. 96: 127–133; 2005. doi:10.1111/j.1349-7006.2005.00017.x.

    Article  PubMed  CAS  Google Scholar 

  • Terness P.; Chuang J. J.; Bauer T.; Jiga L.; Opelz G. Regulation of human auto- and alloreactive T cells by indoleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO? Blood 105: 2480–2486; 2005. doi:10.1182/blood-2004-06-2103.

    Article  PubMed  CAS  Google Scholar 

  • Testa U.; Fossati C.; Samoggia P.; Mariani G; Hassan H. J.; Sposi N. M.; Guerriero R.; Rosato V.; Gabbianelli M.; Pelosi E.; Valtieri M.; Peschle C. Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors. Blood 88: 3391–3406; 1996.

    PubMed  CAS  Google Scholar 

  • Thurner B.; Haendle I.; Röder C.; Dieckmann D.; Keikavoussi P.; Jonuleit H.; Bender A.; Maczek C.; Schreiner D.; von den Driesch P.; Bröcker E. B.; Steinman R. M.; Enk A.; Kämpgen E.; Schuler G. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induceds regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190: 1669–1678; 1999. doi:10.1084/jem.190.11.1669.

    Article  PubMed  CAS  Google Scholar 

  • Vanderheyde N.; Vandenabeele P.; Goldman M.; Willems F. Distinct mechanisms are involved in tumoristatic and tumoricidal activities of monocyte-derived dendritic cells. Immunol. Lett. 91: 99–101; 2004. doi:10.1016/j.imlet.2003.11.011.

    Article  PubMed  CAS  Google Scholar 

  • Vidalain P. O.; Azocar O.; Lamouille B.; Astier A.; Rabourdin-Combe C.; Servet-Delprat C. Measles virus induces functional TRAIL production by human dendritic cells. J. Virol. 74: 556–559; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ward K. A.; Stewart L. A.; Schwarer A. P. CD34+-derived CD11c+ + + BDCA-1+ + CD123+ + DC: expansion of a phenotypically undescribed myeloid DC1 population for use in adoptive immunotherapy. Cytotherapy 8: 130–140; 2006. doi:10.1080/14653240600620689.

    Article  PubMed  CAS  Google Scholar 

  • Yang S.; Darrow T. L.; Vervaert C. E.; Seigler H. F. Immunotherapeutic potential of tumor antigen-pulsed and unpulsed dendritic cells generated from murine bone marrow. Cell Immunol. 179: 84–95; 1997. doi:10.1006/cimm.1997.1151.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z.; Takahashi M.; Narita M.; Toba K.; Liu A.; Furukawa T.; Koike T.; Aizawa Y. Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha. J. Hematother. Stem. Cell Res. 9: 453–464; 2000. doi:10.1089/152581600419116.

    Article  PubMed  CAS  Google Scholar 

  • Zhou L. J.; Tedder T. F. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol. 154: 3821–3835; 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shi.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Shi, J., Wan, Y. et al. A subset of myeloid dendritic cells derived from peripheral blood monocytes represented a predominant subset characterized by their potential tumor-inhibiting activity. In Vitro Cell.Dev.Biol.-Animal 45, 398–404 (2009). https://doi.org/10.1007/s11626-009-9187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9187-4

Keywords

Navigation