Skip to main content

Advertisement

Log in

Mycobacterium aviumintracellulare contamination of mammalian cell cultures

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Mycobacterium avium contamination has been described as a putative contaminant of nonphagocytic mammalian cells. Screening of numerous cultured nonphagocytic mammalian cell lines revealed the presence of intracellular bacteria that were identified as M. avium–intracellulare. An extensive and critical analysis of the origin of infection, of cure protocols, and of biological manifestations in M. avium-infected cells is presented. As no tremendous visible alteration of turbidity or pH of cell culture media, and no morphological change occurred in most M. avium-infected cell cultures, detection of an infection by these bacteria is rather difficult. Recommendations are given for treatment of irreplaceable cultures and prevention of mycobacterial contamination in a tissue culture facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Aden D. P.; Fogel A.; Plotkin S.; Damjanov I.; Knowles B. B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282: 615–616; 1979.

    PubMed  CAS  Google Scholar 

  • Akiyama S.-i; Fojo A.; Hanover J. A.; Pastan I.; Gottesman M. M. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somat. Cell Mol. Genet. 11: 117–126; 1985.

    PubMed  CAS  Google Scholar 

  • Alfonso R.; Romero R. E.; Diaz A.; Calderon M. N.; Urdaneta G.; Arce J.; Patarroyo M. E.; Patarroyo M. A. Isolation and identification of mycobacteria in New World primates maintained in captivity. Vet. Microbiol. 98: 285–295; 2004.

    PubMed  CAS  Google Scholar 

  • Appelberg R.; Castro A. G.; Pedroza J.; Silva R. A.; Orme I. M.; Minoprio P. Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection. Infect. Immun. 62: 3962–3971; 1994. (erratum in: Infect. Immun. 63: 1145; 1995).

    PubMed  CAS  Google Scholar 

  • Aravindhan V.; Sulochana S.; Narayanan S.; Paramasivam C. N.; Narayanan P. R. Identification & differentiation of Mycobacterium avium & M. intracellulare by PCR- RFLP assay using the groES gene. Indian J. Med. Res. 126: 575–579; 2007.

    PubMed  CAS  Google Scholar 

  • Armstrong D. Contamination of tissue culture by bacteria and fungi. In: Fogh J. (ed) Contamination in tissue culture. Academic Press, New York, pp 51–64; 1993.

    Google Scholar 

  • Asghar A.; Gorski J. C.; Haehner-Daniels B.; Hall S. D. Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin. Drug Metab. Dispos. 30: 20–26; 2002.

    PubMed  CAS  Google Scholar 

  • Ashtekar D.; Düzgünes N.; Gangadharam P. R. J. Activity of free and liposome encapsulated streptomycin against Mycobacterium avium complex (MAC) inside peritoneal macrophages. J. Antimicrob. Chemother. 28: 615–617; 1991.

    PubMed  CAS  Google Scholar 

  • Baksh F. K.; Handler M. S. Central nervous system Mycobacterium avium complex infection. Arch. Pathol. Lab. Med. 120: 614–615; 1996.

    PubMed  CAS  Google Scholar 

  • Bannantine J. P.; Huntley J. F.; Miltner E.; Stabel J. R.; Bermudez L. E. The Mycobacterium avium subsp. paratuberculosis 35 kDa protein plays a role in invasion of bovine epithelial cells. Microbiology 149: 2061–2069; 2003.

    PubMed  CAS  Google Scholar 

  • Benda P.; Lightbody J.; Sato G.; Levine L.; Sweet W. Differentiated rat glial cell strain in tissue culture. Science 161: 370–371; 1968.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E. Infection of “nonprofessional phagocytes” with Mycobacterium avium complex. Clin. Immunol. Immunopathol. 61: 225–235; 1991.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect. Immun. 64: 1400–1406; 1996.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Inderlied C. B. Effect of Mycobacterium avium infection on the influx, accumulation and efflux of KRM-1648 by human macrophage. Microb. Drug Resist. 3: 277–282; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Inderlied C. B.; Young L. S. Stimulation with cytokines enhances penetration of azithromycin into human macrophages. Antimicrob. Agents Chemother. 35: 2625–2629; 1991.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Kolonoski P.; Wu M.; Aralar P. A.; Inderlied C. B.; Young L. S. Mefloquine is active in vitro and in vivo against Mycobacterium avium complex. Antimicrob. Agents Chemother. 43: 1870–1874; 1999.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Petrofsky M. Regulation of the expression of Mycobacterium avium complex proteins differs according to the environment within host cells. Immunol. Cell Biol. 75: 35–40; 1997.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Petrofsky M.; Goodman J. Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells. Infect. Immun. 65: 3768–3773; 1997.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Sangari F. J. Mycobacterial invasion of epithelial cells. Subcell. Biochem. 33: 231–249; 2000.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Sangari F. J. Cellular and molecular mechanisms of internalization of mycobacteria by host cells. Microbes Infect. 3: 37–42; 2001.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Young L. S. Activities of amikacin, roxithromycin and azithromycin alone or in combination with tumor necrosis factor against Mycobacterium avium complex. Antimicrob. Agents Chemother. 32: 1149–1153; 1988.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Young L. S. Ethanol augments intracellular survival of Mycobacterium avium complex and impairs macrophage responses to cytokines. J. Infect. Dis. 163: 1286–1292; 1991.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Young L. S. Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex. Infect. Immun. 62: 2021–2026; 1994.

    PubMed  CAS  Google Scholar 

  • Bermudez L. E.; Wu M.; Young L. S. Intracellular killing of Mycobacterium avium complex by rifapentin and liposome-encapsulated amikacin. J. Infect. Dis. 156: 510–513; 1987.

    PubMed  CAS  Google Scholar 

  • Bertram M. A.; Inderlied C. B.; Yadegar S.; Kolanoski P.; Yamada J. K.; Young L. S. Confirmation of the beige mouse model for study of disseminated infection with Mycobacterium avium complex. J. Infect. Dis. 154: 194–195; 1986.

    PubMed  CAS  Google Scholar 

  • Blanchard D. K.; Michelini-Norris M. B.; Pearson C. A.; Mc Millen S.; Djeu J. Y. Production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by monocytes and large granular lymphocytes stimulated with Mycobacterium avium–M. intracellulare: activation of bactericidal activity by GM-CSF. Infect. Immun. 59: 2396–2402; 1991.

    PubMed  CAS  Google Scholar 

  • Blasi E.; Barluzzi R.; Bocchini V.; Mazzola R.; Bistoni R. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27: 229–237; 1990.

    PubMed  CAS  Google Scholar 

  • Bocchini V.; Casalone R.; Collini P.; Rebel G.; Lo Curto F. Changes in glial fibrillary acidic protein and karyotype during culturing of two cell lines established from human glioblastoma multiforme. Cell Tissue Res. 265: 73–81; 1991.

    PubMed  CAS  Google Scholar 

  • Bodmer T.; Miltner E.; Bermudez L. E. Mycobacterium avium resists exposure to the acidic conditions of the stomach. FEMS Microbiol. Lett. 182: 45–49; 2000.

    PubMed  CAS  Google Scholar 

  • Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties. Biochim. Biophys. Acta. 864: 257–304; 1986.

    PubMed  CAS  Google Scholar 

  • Bono M.; Jemmi T.; Bernasconi C.; Burki D.; Telenti A.; Bodmer T. Genotypic characterization of Mycobacterium avium strains recovered from animals and their comparison to human strains. Appl. Environ. Microbiol. 61: 371–373; 1995.

    PubMed  CAS  Google Scholar 

  • Bresalier R. S.; Niv Y.; Byrd J. C.; Duh Q.-Y.; Toribara N. W.; Rockwell R. W.; Dahiya R.; Kim Y. S. Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J. Clin. Invest. 87: 1037–1045; 1991.

    PubMed  CAS  Google Scholar 

  • Brosbe E. A.; Sugihara P. T.; Smith C. R. Intracellular growth of tubercle bacilli and other mycycobacteria in the JIII line of leukemic monocytes. J. Bacteriol. 81: 979–985; 1961.

    PubMed  CAS  Google Scholar 

  • Buehring G. C.; Pan C. Y.; Valesco M. Cell culture contamination by mycobacteria. In Vitro Cell. Dev. Biol. 31A: 735–737; 1995.

    Google Scholar 

  • Cabot M. C.; Goucher C. R. Chaulmogric acid: assimilation into the complex lipids of mycobacteria. Lipids 16: 146–148; 1981.

    PubMed  CAS  Google Scholar 

  • Carson L. A.; Petersen N. J.; Favero M. S.; Aguero S. M. Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl. Environ. Microbiol. 36: 839–846; 1978.

    PubMed  CAS  Google Scholar 

  • Catanzaro A.; Wright S. D. Binding of Mycobacterium avium–Mycobacterium intracellulare to human leukocytes. Infect. Immun. 58: 2951–2956; 1990.

    PubMed  CAS  Google Scholar 

  • Chapin K. C.; Murray P. R. Stains. In: Murray P. R.; Baron E. J.; Pfaller M. A.; Tenover F. C.; Yolken R. H. (eds) Manual of clinical microbiology. 7th ed. ASM Press, Washington DC, pp 1674–1686; 1999.

    Google Scholar 

  • Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104: 255–262; 1977.

    PubMed  CAS  Google Scholar 

  • Collett A.; Tanianis-Hugues J.; Warhurst G. Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions. Biochem Pharmacol. 68: 783–90; 2004.

    PubMed  CAS  Google Scholar 

  • Coope D.; von Graevenitz A.; Corrales J.; Miller G. Tissue culture contamination by nontuberculous mycobacteria. Microbiol. Immunol. 27: 113–115; 1983.

    PubMed  CAS  Google Scholar 

  • Crowle A. J.; Tsang A. Y.; Vatter A. E.; May M. H. Comparison of 15 laboratory and patient derived strains of Mycobacterium avium for ability to infect and multiply in cultured human macrophages. J. Clin. Microbiol. 24: 812–821; 1986.

    PubMed  CAS  Google Scholar 

  • Damle P.; Mc Clatchy J. K.; Gangadharam P. R. J.; Davidson P. T. Antimicobacterial activity of some potential chemotherapeutic compounds. Tubercle 59: 135–138; 1978.

    PubMed  CAS  Google Scholar 

  • David H. L. Basis for lack of drug susceptibility of atypical mycobacteria. Rev. Infect. Dis. 3: 878–884; 1981.

    PubMed  CAS  Google Scholar 

  • David H. L.; Rastogi N.; Clavel-Seres S.; Clement F.; Thorel M. -F. Structure of the cell envelope of Mycobacterium avium. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A]. 264: 49–66; 1987.

    CAS  Google Scholar 

  • Denis M. Growth of Mycobacterium avium in human monocytes: identification of cytokines which reduce and enhance intracellular microbial growth. Eur. J. Immunol. 21: 391–395; 1991a.

    PubMed  CAS  Google Scholar 

  • Denis M. Tumor necrotic factor and granulocyte macrophage colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent Mycobacterium avium. Killing effector mechanism depends on the generation of reactive nitrogen intermediates. J. Leucocyte Biol. 49: 380–387; 1991b.

    CAS  Google Scholar 

  • Deret S.; Voegelin J.; Lelong-Rebel I. H.; Rebel G. Effects of culture conditions on taurine uptake by various variants of human endometrial carcinoma cells in culture. Amino Acids 26: 183–195; 2004.

    PubMed  CAS  Google Scholar 

  • Drewinko B.; Romsdahl M. M.; Yang L. Y.; Ahearn M. J.; Trujillo J. M. Establishment of a human carcinoembryonic antigen-producing colon adenocarcinoma cell line. Cancer Res. 36: 467–475; 1976.

    PubMed  CAS  Google Scholar 

  • Du Moulin G. C.; Stottmeier K. D.; Pelletier P. A.; Tsang A. Y.; Hedley-Whyte J. Concentration of Mycobacterium avium by hospital hot water systems. JAMA. 260: 1599–601; 1988.

    PubMed  CAS  Google Scholar 

  • Dunbar F. P.; Pejovic I.; Cacciatore R.; Peric-Golia L.; Runyon E. H. Mycobacterium intracellulare. Maintenance of pathogenicity in relationship to lyophilization and colony form. Scand. J. Respir. Dis. 49: 153–162; 1968.

    PubMed  CAS  Google Scholar 

  • Eaton T.; Falkinham J. O. 3rd; Von-Reyn C. F. Recovery of Mycobacterium avium from cigarettes. J. Clin. Microbiol. 33: 2757–2758; 1995.

    PubMed  CAS  Google Scholar 

  • Embil J.; Warren P.; Yakrus M.; Stark R.; Corne S.; Forrest D.; Hershfield E. Pulmonary illness associated with exposure to Mycobacterium-avium complex in hot tub water. Hypersensitivity pneumonitis or infection. Chest. 111: 813–816; 1997.

    PubMed  CAS  Google Scholar 

  • Fennelly K. P.; Martyny J. W.; Fulton K. E.; Orme I. M.; Cave D. M.; Heifets L. B. Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. Am. J. Respir. Crit. Care Med. 169: 604–609; 2004.

    PubMed  Google Scholar 

  • Field S. K.; Fisher D.; Cowie R. L. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest. 126: 566–581; 2004.

    PubMed  Google Scholar 

  • Finlay B. B.; Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol. Biol. Rev. 61: 136–169; 1997.

    PubMed  CAS  Google Scholar 

  • Fleckenstein E.; Uphoff C. C.; Drexler H. G. Effective treatment of mycoplasma contamination in cell lines with enrofloxacin (Baytril). Leukemia 8: 1424–1434; 1994.

    PubMed  CAS  Google Scholar 

  • Fregnan G. B.; Smith D. W. Description of various colony forms of mycobacteria. J. Bacteriol. 83: 819–827; 1962.

    PubMed  CAS  Google Scholar 

  • Frehel C.; Ryter A.; Rastogi N.; David H. The electron-transparent zone in phagocytized Mycobacterium avium and other mycobacteria: formation, persistence and role in bacterial survival. Ann. Inst. Pasteur Microbiol. 137: 239–257; 1986. (erratum in Ann. Inst. Pasteur Microbiol. 138B: 147; 1987.

    Google Scholar 

  • Gangadharam P. R.; Pratt P. F. In vitro response of murine alveolar and peritoneal macrophages to Mycobacterium intracellulare. Am. Rev. Respir. Dis. 128: 1044–1047; 1983.

    PubMed  CAS  Google Scholar 

  • Garcia R. C.; Banfi E.; Pittis M. G. Infection of macrophage-like THP-1 cells with Mycobacterium avium results in a decrease in their ability to phosphorylate nucleolin. Infect Immun. 68: 3121–3218; 2000.

    PubMed  CAS  Google Scholar 

  • Gaush C. R.; Hard W. L.; Smith T. H. Characterization of an established line of canine kidney cells (MDCK). Proc. Soc. Exp. Biol. Med. 122: 931–935; 1966.

    PubMed  CAS  Google Scholar 

  • Giri D. K.; Mehta R. T.; Kansal R. G.; Aggarwal B. B. Mycobacterium avium–intracellulare complex activates nuclear transcription factor-kappaB in different cell types through reactive oxygen intermediates. J. Immunol. 161: 4834–4841; 1998.

    PubMed  CAS  Google Scholar 

  • Goetz I. E.; Moklebust R.; Warren C. J. Effects of some antibiotics on the growth of human diploid skin fibroblasts in cell culture. In Vitro 15: 114–119; 1979.

    PubMed  CAS  Google Scholar 

  • Gomes M. S.; Dom G.; Pedrosa J.; Boelaert J. R.; Appelberg R. Effects of iron deprivation on Mycobacterium avium growth. Tuber. Lung Dis. 79: 321–328; 1999a.

    PubMed  CAS  Google Scholar 

  • Gomes M. S.; Paul S.; Moreira A. L.; Appelberg R.; Rabinovitch M.; Kaplan G. Survival of Mycobacterium avium and Mycobacterium tuberculosis in acidified vacuoles of murine macrophages. Infect. Immun. 67: 3199–3206; 1999b.

    PubMed  CAS  Google Scholar 

  • Goslee S.; Wolinsky E. Water as a source of potentially pathogenic mycobacteria. Am. Rev. Respir. Dis. 113: 287–292; 1976.

    PubMed  CAS  Google Scholar 

  • Grandi M.; Geroni C.; Giuliani F. C. Isolation and characterization of a human colon adenocarcinoma cell line resistant to doxorubicin. Br. J. Cancer 54: 515–518; 1986.

    PubMed  CAS  Google Scholar 

  • Grange J. M.; Yates M. D.; Boughtone E. The avian tubercle bacillus and its relatives. J. Appl. Bacteriol. 68: 411–431; 1990.

    PubMed  CAS  Google Scholar 

  • Granzotto M.; Drigo I.; Candussio L.; Rosati A.; Bartoli F.; Giraldi T.; Decorti G. Rifampicin and verapamil induce the expression of P-glycoprotein in vivo in Ehrlich ascites tumor cells. Cancer Lett. 205: 107–115; 2004.

    PubMed  CAS  Google Scholar 

  • Greene L. A.; Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U. S. A. 73: 2424–2428; 1976.

    PubMed  CAS  Google Scholar 

  • Greiner B.; Eichelbaum M.; Fritz P.; Kreichgauer H. P.; Von Richter O.; Zundler J.; Kroemer H. K. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104: 147–153; 1999. (erratum in J. Clin. Invest. 110: 571; 2002).

    PubMed  CAS  Google Scholar 

  • Hale-Donze H.; Greenwell-Wild T.; Mizel D.; Doherty T. M.; Chatterjee D.; Orenstein J. M.; Wahl S. M. Mycobacterium avium complex promotes recruitment of monocyte hosts for HIV-1 and bacteria. J. Immunol. 169: 3854–3862; 2002.

    PubMed  CAS  Google Scholar 

  • Hartmann P.; Becker R.; Franzen C.; Schell-Frederick E.; Römer J.; Jacobs M.; Fätkenheuer G.; Plum G. Phagocytosis and killing of Mycobacterium avium complex by human neutrophils. J. Leukoc. Biol. 69: 397–404; 2001.

    PubMed  CAS  Google Scholar 

  • Hines M. E.; Frazier K. S. Differentiation of mycobacteria on the basis of chemotype profiles by using matrix solid-phase dispersion and thin-layer chromatography. J. Clin. Microbiol. 31: 610–614; 1993.

    PubMed  CAS  Google Scholar 

  • Hsu N.; Young L. S.; Bermudez L. E. Response to stimulation with recombinant cytokines and synthesis of cytokines by murine intestinal infected with the Mycobacterium avium complex. Infect. Immun. 63: 528–533; 1995.

    PubMed  CAS  Google Scholar 

  • Huttunen K.; Jussila J.; Hirvonen M. R.; Iivanainen E.; Katila M. L. Comparison of mycobacteria-induced cytotoxicity and inflammatory responses in human and mouse cell lines. Inhal. Toxicol. 13: 977–991; 2001.

    PubMed  CAS  Google Scholar 

  • Huttunen K.; Ruotsalainen M.; Iivanainen E.; Torkko P.; Katila M.; Hirvonen M. Inflammatory responses in RAW264.7 macrophages caused by mycobacteria isolated from moldy houses. Environ. Toxicol. Pharmacol. 8: 237–244; 2000.

    PubMed  CAS  Google Scholar 

  • Huxtable R. J. Physiological actions of taurine. Physiol. Rev. 72: 101–163; 1992.

    PubMed  CAS  Google Scholar 

  • Inderlied C. B.; Kemper C. A.; Bermudez L. E. The Mycobacterium avium complex. Clin. Microbiol. Rev. 6: 266–310; 1993.

    PubMed  CAS  Google Scholar 

  • Jacobsen P. L.; Ng H.; Levy L. The suceptibility of Mycobacteria to hypnocarpic acid. Am. Rev. Respir. Dis. 107: 1022–1029; 1973.

    PubMed  CAS  Google Scholar 

  • Kajioka R.; Hui J. The pleiotropic effect of spontaneous single-step variant production in Mycobacterium intracellulare. Scand. J. Respir. Dis. 59: 91–100; 1978.

    PubMed  CAS  Google Scholar 

  • Kavallaris M.; Madafiglio J.; Norris M. D.; Haber M. Resistance to tetracycline, a hydrophilic antibiotic, is mediated by P-glycoprotein in human multidrug-resistant cells. Biochem. Biophys. Res. Commun. 190: 79–85; 1993.

    PubMed  CAS  Google Scholar 

  • Kazda J.; Vrubel F.; Dornetzhuber V. Course of infection induced in man by inoculation with mycobacterium originating in water. Am. Rev. Respir. Dis. 95: 848–853; 1967.

    PubMed  CAS  Google Scholar 

  • Kellogg J. A.; Bankert D. A.; Withers G.; Sweimler W.; Kiehn T. E.; Pfyffer G. E. Application of the Sherlock Mycobacteria Identification System using high-performance liquid chromatography in a clinical laboratory. J. Clin. Microbiol. 39: 964–970; 2001.

    PubMed  CAS  Google Scholar 

  • Klebe; Ruddle F. H. Neuroblastoma cell culture analysis of a differentiating stem cell system. J. Cell Biol. 43: 69A; 1969.

    Google Scholar 

  • Kuan S. F.; Byrd J. C.; Basbaum C. B.; Kim Y. S. Characterization of quantitative mucin variants from a human colon cancer cell line. Cancer Res. 47: 5715–5724; 1987.

    PubMed  CAS  Google Scholar 

  • Langelaar M. F.; Weber C. N.; Overdijk M. B.; Müller K. E.; Koets A. P.; Rutten V. P. Cytokine gene expression profiles of bovine dendritic cells after interaction with Mycobacterium avium ssp. paratuberculosis (M.a.p.), Escherichia coli (E. coli) or recombinant M.a.p. heat shock protein 70. Vet. Immunol. Immunopathol. 107: 153–161; 2005.

    PubMed  CAS  Google Scholar 

  • Laochumroonvorapong P.; Paul S.; Manca C.; Freedman V. H.; Kaplan G. Mycobacterial growth and sensitivity to H2O2 killing in human monocytes in vitro. Infect. Immun. 65: 4850–4857; 1997.

    PubMed  CAS  Google Scholar 

  • Lelong I. H.; Rebel G. In vitro taurine uptake into cell culture influenced by using media with or without CO2. J. Pharmacol. Toxicol. Methods 39: 211–220; 1998.

    PubMed  CAS  Google Scholar 

  • Lelong-Rebel I.; Brisson C.; Fabre M.; Bergerat J.-P.; Rebel G. Effect of pO2 on antitumor drug cytotoxicity on MDR and non-MDR variants selected from the LoVo metastatic colon carcinoma cell line. Anticancer Res. 28: 55–68; 2008.

    PubMed  CAS  Google Scholar 

  • Li J. Y.; Lo S. T.; Ng C. S. Molecular detection of Mycobacterium tuberculosis in tissues showing granulomatous inflammation without demonstrable acid-fast bacilli. Diagn. Mol. Pathol. 9: 67–74; 2000.

    PubMed  CAS  Google Scholar 

  • Lojda Z.; Fric P. Sucrase-isomaltase and other brush border glycosidases in colorectal tumors. Acta Histochem. 98: 285–293; 1996.

    PubMed  CAS  Google Scholar 

  • Mapother M. E.; Songer J. G. In vitro interaction of Mycobacterium avium with intestinal epithelial cells. Infect. Immun. 45: 67–73; 1984.

    PubMed  CAS  Google Scholar 

  • McCarthy C. Spontaneous and Induced Mutation in Mycobacterium avium. Infect. Immun. 2: 223–228; 1970.

    PubMed  CAS  Google Scholar 

  • McCune R. M.; Feldman F. M.; Lambert H. P.; McDermott W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123: 445–468; 1966.

    PubMed  CAS  Google Scholar 

  • McGarrity G. J. Spread and control of mycoplasmal infection of cell cultures. In Vitro 12: 643–648; 1976.

    PubMed  CAS  Google Scholar 

  • Messenger A. J. M.; Barclay R. Bacteria, iron and pathogenicity. Biochem. Educ. 11: 54–64; 1983.

    CAS  Google Scholar 

  • Metchock B. G.; Nolte F. S.; Wallace R. J. Jr Mycobacterium. In: Murray P. R.; Baron E. J.; Pfaller M. A.; Tenover F. C.; Yolken R. H. (eds) Manual of clinical microbiology. 7th ed. ASM Press, Washington DC, pp 399–437; 1999.

    Google Scholar 

  • Middleton A. M.; Chadwick M. V.; Nicholson A. G.; Dewar A.; Groger R. K.; Brown E. J.; Wilson R. The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa. Mol. Microbiol. 38: 381–391; 2000.

    PubMed  CAS  Google Scholar 

  • Mijs W.; De Vreese K.; Devos A.; Pottel H.; Valgaeren A.; Evans C.; Norton J.; Parker D.; Rigouts L.; Portaels F.; Reischl U.; Watterson S.; Pfyffer G.; Rossau R. Evaluation of a commercial line probe assay for identification of Mycobacterium species from liquid and solid culture. Eur. J. Clin. Microbiol. Infect. Dis. 21: 794–802; 2002.

    PubMed  CAS  Google Scholar 

  • Mitin T.; Von Moltke L. L.; Court M. H.; Greenblatt D. J. Levothyroxin up-regulates P-glycoprotein independent of the pregnae X receptor. Drug Metab. Disp. 32: 779–782; 2004.

    CAS  Google Scholar 

  • Mizrahi A.; Lazar A. Media for cultivation of animal cells: an overview. Cytotechnology 1: 199–214; 1988.

    Google Scholar 

  • Mohagheghpour N.; Waleh N.; Garger S. J.; Dousman L.; Grill L. K.; Tuse D. Synthetic melanin suppresses production of proinflammatory cytokines. Cell Immunol. 199: 25–36; 2000.

    PubMed  CAS  Google Scholar 

  • Momotani E.; Whipple D. L.; Thiermann A. S.; Cheville N. F. Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer’s patches in calves. Vet. Pathol. 25: 131–137; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Munson L.; Luibel F. J.; Van Kruiningen H. J. Siderophilic bodies associated with hemosiderosis and atypical mycobacterial infection in an island siamang (Hylobates syndactylus). J. Med. Primatol. 20: 265–270; 1991.

    PubMed  CAS  Google Scholar 

  • Muscoplat C. C.; Thoen C. O.; Chen A. W.; Johnson D. W. Macrophage-dependent lymphocyte immunostimulation in cattle infected with Mycobacterium bovis and with Mycobacterium avium. Infect. Immun. 10: 675–677; 1974.

    PubMed  CAS  Google Scholar 

  • Nichterlein T.; Kretschmar M.; Schadt A.; Meyer A.; Wildfeuer A.; Laufen H.; Hof H. Reduced intracellular activity of antibiotics against Listeria monocytogenes in multidrug resistant cells. Int. J. Antimicrob. Agents 2: 119–125; 1998.

    Google Scholar 

  • Ogata S.; Uehara H.; Chen A.; Itzkowitz S. H. Mucin gene expression in colonic tissues and cell lines. Cancer Res. 52: 5971–5978; 1992.

    PubMed  CAS  Google Scholar 

  • O’Toole D.; Tharp S.; Thomsen B. V.; Tan E.; Payeur J. B. Fatal mycobacteriosis with hepatosplenomegaly in a young dog due to Mycobacterium avium. J. Vet. Diagn. Invest. 17: 200–204; 2005.

    PubMed  CAS  Google Scholar 

  • Parker B. C.; Ford M. A.; Gruft H.; Falkinham J. O. 3rd Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am. Rev. Respir. Dis. 128: 652–656; 1983.

    PubMed  CAS  Google Scholar 

  • Pattillo R. A.; Gey G. O. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 28: 1231–236; 1968.

    PubMed  CAS  Google Scholar 

  • Pelletier P. A.; du Moulin G. C.; Stottmayer K. D. Mycobacteria in public water supplies: comparative resistance to chlorine. Microbiol. Sci. 5: 147–148; 1988.

    PubMed  CAS  Google Scholar 

  • Prince D. S.; Peterson D. D.; Steiner R. M.; Gottlieb J. E.; Scott R.; Israel H. L.; Figueroa W. G.; Fish J. E. Infection with Mycobacterium avium complex in patients without predisposing conditions. N. Engl. J. Med. 321: 863–868; 1989.

    PubMed  CAS  Google Scholar 

  • Poelarends G. J.; Mazurkiewicz P.; Konings W. N. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim. Biophys. Acta. 1555: 1–7; 2002.

    PubMed  CAS  Google Scholar 

  • Rao S. P.; Hayashi T.; Catanzaro A. Release of monocyte chemoattractant protein (MCP)-1 by a human alveolar epithelial cell line in response to mycobacterium avium. FEMS Immunol. Med. Microbiol. 29: 1–7; 2000.

    PubMed  CAS  Google Scholar 

  • Rastogi N.; Bachelet M.; Carvalho de Sousa J. P. Intracellular growth of Mycobacterium avium in human macrophages is linked to the increased synthesis of prostaglandin E2 and inhibition of the phagosome-lysosome fusions. FEMS Microbiol. Immunol. 4: 273–279; 1992a.

    PubMed  CAS  Google Scholar 

  • Rastogi N.; David H. L. Growth and cell division of Mycobacterium avium. J. Gen. Microbiol. 126: 77–84; 1981.

    PubMed  CAS  Google Scholar 

  • Rastogi N.; David H. L. Phagocytosis of Mycobacterium leprae and M. avium by armadillo lung fibroblasts and kidney epithelial cells. Acta Leprol. 2: 267–276; 1984.

    PubMed  CAS  Google Scholar 

  • Rastogi N.; Frehel C.; Ryter A.; Ohayon H.; Lesourd M.; David H. L. Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for exclusion of antimicrobial agents. Antimicrob. Agents Chemother. 20: 666–677; 1981.

    PubMed  CAS  Google Scholar 

  • Rastogi N.; Labrousse V.; de Sousa J. P. Mycobacterial growth and ultrastructure in mouse L-929 fibroblasts and bone marrow-derived macrophages: evidence that infected fibroblasts secrete mediators capable of modulating bacterial growth in macrophages. Curr. Microbiol. 25: 203–213; 1992b.

    PubMed  CAS  Google Scholar 

  • Rastogi N.; Potar M. C.; David H. L. Intracellular growth of pathogenic mycobacteria in the continuous murine macrophage cell line J774 ultrastructure and drug susceptibility studies. Curr. Microbiol. 16: 79–92; 1987.

    CAS  Google Scholar 

  • Rautiala S.; Torvinen E.; Torkko P.; Suomalainen S.; Nevalainen A.; Kalliokoski P.; Katila M. L. Potentially pathogenic, slow-growing mycobacteria released into workplace air during the remediation of buildings. J. Occup. Environ. Hyg. 1: 1–6; 2004.

    PubMed  Google Scholar 

  • Riley R. L.; Mills C. C.; O’Grady F.; Sultan L. U.; Wittstadt F.; Shivpuri D. N. Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: comparative infectiousness of different patients. Am. Rev. Respir. Dis. 85: 511–525; 1962.

    PubMed  CAS  Google Scholar 

  • Roecklein J. A.; Swartz R. P.; Yeager H. Jr. Nonopsonic uptake of Mycobacterium avium complex by human monocytes and alveolar macrophages. J. Lab. Clin. Med. 119: 772–781; 1992.

    PubMed  CAS  Google Scholar 

  • Rosenzweig D. Y. Pulmonary mycobacterial infections due to Mycobacterium intracellulare- avium complex. Clinical features and course in 100 consecutive cases. Chest 75: 115–119; 1979.

    PubMed  CAS  Google Scholar 

  • Rosenzweig D. Y. “Atypical” mycobacterioses. Clin. Chest Med. 1: 273–284; 1980.

    PubMed  CAS  Google Scholar 

  • Sangari F. J.; Goodman J. R.; Bermudez L. E. Ultrastructural study of Mycobacterium avium infection of HT-29 human intestinal epithelial cells. J. Med. Microbiol. 49: 139–147; 2000a.

    PubMed  CAS  Google Scholar 

  • Sangari F. J.; Goodman J.; Bermudez L. E. Mycobacterium avium enters intestinal epithelial cells through the apical membrane, but not by the basolateral surface, activates small GTPase Rho and, once within epithelial cells, express invasive phenotype. Cell Microbiol. 2: 561–568; 2000b.

    PubMed  CAS  Google Scholar 

  • Sangari F. J.; Goodman J.; Petrofsky M.; Kolonoski P.; Bermudez L. E. Mycobacterium avium invades the intestinal mucosa primarily by interacting with enterocytes. Infect. Immun. 69: 1515–1520; 2001.

    PubMed  CAS  Google Scholar 

  • Sangari F. J.; Petrofsky M.; Bermudez L. E. Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES. Infect. Immun. 67: 5069–5075; 1999.

    PubMed  CAS  Google Scholar 

  • Schaefer W. B.; Davis C. L.; Cohn M. L. Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am. Rev. Respir. Dis. 102: 499–506; 1970.

    PubMed  CAS  Google Scholar 

  • Schlossberger H. In: Heubner W; Schuller J (eds) Handbuch der Pharmakologie, Erganzungwerk. 5: Springer Verlag, Berlin, p 1; 1938.

    Google Scholar 

  • Schnittman S.; Lane H. C.; Witebsky F. G.; Gosey L. L.; Hoggan M. D.; Fauci A. S. Host defense against Mycobacterium-avium complex. J. Clin. Immunol. 8: 234–243; 1988.

    PubMed  CAS  Google Scholar 

  • Sha S. H.; Schacht J. Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: D-methionine is a potential protectant. Hear. Res. 142: 34–40; 2000.

    PubMed  CAS  Google Scholar 

  • Shepard C. C. Behavior of the atypical mycobacteria in HeLa cells. Am. Rev. Tuberc. 77: 968–975; 1958.

    PubMed  CAS  Google Scholar 

  • Somoskövi A.; Hotaling J. E.; Fitzgerald M.; O’Donnell D.; Parsons L. M.; Salfinger, M.; Lessons from a proficiency testing event for acid-fast microscopy. Chest 120: 250–257; 2001.

    PubMed  Google Scholar 

  • Stabel J. R.; Stabel T. J. Immortalization and characterization of bovine peritoneal macrophages transfected with SV40 plasmid DNA. Vet. Immunol. Immunopathol. 45: 211–220; 1995.

    PubMed  CAS  Google Scholar 

  • Sugita Y.; Ishii N.; Katsuno M.; Yamada R.; Nakajima H. Familial cluster of cutaneous Mycobacterium avium infection resulting from use of a circulating constantly heated bath water sytem. Brit. J. Dematol. 142: 789–793; 2000.

    CAS  Google Scholar 

  • Sung N.; Collins M. T. Variation in resistance of Mycobacterium paratuberculosis to acid environments as a function of culture medium. Appl. Environ. Microbiol. 69: 6833–6840; 2003.

    PubMed  CAS  Google Scholar 

  • Takahashi K.; Sawasaki Y.; Hata J. I.; Mukai K.; Goto T. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell. Dev. Biol. 26: 265–274; 1990.

    PubMed  CAS  Google Scholar 

  • Taylor R. H.; Falkinham J. O. III; Norton C. D.; Le Chevallier M. W. Chlorine, chloramine, chlorine dioxide and ozone susceptibilty of Mycobacterium avium. Environ. Microbiol. 66: 1702–1705; 2000.

    CAS  Google Scholar 

  • Telenti A.; Marchesi F.; Balz M.; Bally F.; Böttger E. C.; Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 31: 175–178; 1993.

    PubMed  CAS  Google Scholar 

  • Tell L. A.; Woods L.; Cromie R. L. Mycobacteriosis in birds. Rev Sci Tech. 20: 180–203; 2001.

    PubMed  CAS  Google Scholar 

  • Thorel M. F.; Huchzermeyer H. F.; Michel A. L. Mycobacterium avium and Mycobacterium intracellulare infection in mammals. Rev. Sci. Tech. Off. Int. Epiz. 20: 204–218; 2001.

    CAS  Google Scholar 

  • Tobin-D’Angelo M. J.; Blass M. A.; Del Rio C.; Halvosa J. S.; Blumberg H. M.; Horsburgh C. R. Jr. Hospital water as a source of Mycobacterium avium complex isolates in respiratory specimens. J. Infect. Dis. 189: 98–104; 2004.

    PubMed  Google Scholar 

  • Tomioka H. Prospects for development of new antimycobacterial drugs. J. Infect. Chemother. 6: 8–20; 2000.

    PubMed  CAS  Google Scholar 

  • Tomioka H.; Sato K.; Sano C.; Sano K.; Shimizu T. Intramacrophage passage of Mycobacterium tuberculosis and M. avium complex alters the drug susceptibilities of the organisms as determined by intracellular susceptibility testing using macrophages and type II alveolar epithelial cells. Antimicrob. Agents Chemother. 46: 519–521; 2002.

    PubMed  CAS  Google Scholar 

  • Tomioka H.; Sato K.; Sano C.; Akaki T.; Shimizu T.; Kajitani H.; Saito H. Effector molecules of the host defence mechanism against Mycobacterium avium complex: the evidence showing that reactive oxygen intermediates, reactive nitrogen intermediates, and free fatty acids each alone are not decisive in expression of macrophage antimicrobial activity against the parasites. Clin. Exp. Immunol. 109: 248–254; 1997.

    PubMed  CAS  Google Scholar 

  • Torvinen E.; Suomalainen S.; Lehtola M. J.; Miettinen I. T.; Zacheus O.; Paulin L.; Katila M. L.; Martikainen P. J. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl. Environ. Microbiol. 70: 1973–1981; 2004.

    PubMed  CAS  Google Scholar 

  • Tumilowicz J. J.; Nichols W. W.; Cholon J. J.; Greene A. E. Definition of a continuous human cell line derived from neuroblastoma. Cancer Res. 30: 2110–2118; 1970.

    PubMed  CAS  Google Scholar 

  • Uphoff C. C.; Gignac S. M.; Drexler H. G. Mycoplasma contamination in human leukemia cell lines. I. Comparison of various detection methods. J. Immunol. Methods 149: 43–53; 1992.

    PubMed  CAS  Google Scholar 

  • Valeriote T.; Medoff C.; Dieck M. A. Potentiation of cytotoxicity of anticancer agents by several different polyene antibiotics. J. Nat. Cancer Inst. 72: 425–433; 1984.

    Google Scholar 

  • Venkataprasad N.; Jacobs M. R.; Johnson J. L.; Klopman G.; Ellner J. J. Activity of new quinolones against intracellular Mycobacterium avium in human monocytes. J. Antimicrob. Chemother. 40: 841–845; 1997. (erratum in J. Antimicrob. Chemother. 41: 674; 1998).

    PubMed  CAS  Google Scholar 

  • Von Reyn C. F.; Waddell R. D.; Eaton T.; Arbeit R. D.; Maslow J. N.; Barber T. W.; Brindle R. J.; Gilks C. F.; Lumio J.; Lähdevirta J.; Ranki A.; Dawson A.; Falkinham J. O. Isolation of Mycobacterium avium complex from water in the United States, Finland, Zaire and Kenya. J. Clin. Microbiol. 31: 3227–3230; 1993.

    Google Scholar 

  • Weatherby K. E.; Zwilling B. S.; Lafuse W. P. Resistance of macrophages to Mycobacterium avium is induced by alpha2-adrenergic stimulation. Infect. Immun. 71: 22–29; 2003.

    PubMed  CAS  Google Scholar 

  • Wheeler W. C.; Hanks J. H. Utilization of external growth factors by intracellular microbes: mycobacterium paratuberculosis and wood pigeon mycobacteria. J. Bacteriol. 89: 889–896; 1965.

    PubMed  CAS  Google Scholar 

  • Woodley C. L.; David H. L. Effect of temperature on the rate of the transparent to opaque colony type transition in Mycobacterium avium. Antimicrob. Agents Chemother. 9: 113–119; 1976.

    PubMed  CAS  Google Scholar 

  • Wu H. S.; Kolonovski P.; Chang Y. Y.; Bermudez L. E. Invasion of the brain and chronic central nervous system after systemic Mycobacterium avium complex infection in mice. Infect. Immun. 68: 2979–298; 2000.

    PubMed  CAS  Google Scholar 

  • Yacyshyn B. R.; Bowen-Yacyshyn M. B.; Pilarski L. M. Inhibition by rapamycin of P-glycoprotein 170-mediated export from normal lymphocytes. Scand. J. Immunol. 43: 449–455; 1996.

    PubMed  CAS  Google Scholar 

  • Yajko D. M.; Nassos P. S.; Sanders C. A.; Hadley W. K. Killing by antimycobacterial agents of AIDS-derived strains of Mycobacterium avium complex, inside cells of mouse macrophage cell line J774. Am. Rev. Respir. Dis. 140: 1198–1203; 1989.

    PubMed  CAS  Google Scholar 

  • Yamazaki Y.; Danelishvili L.; Wu M.; Hidaka E.; Katsuyama T.; Stang B.; Petrofsky M.; Bildfell R.; Bermudez L. E. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol. 8: 806–814; 2006.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Lelong-Rebel.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelong-Rebel, I.H., Piemont, Y., Fabre, M. et al. Mycobacterium aviumintracellulare contamination of mammalian cell cultures. In Vitro Cell.Dev.Biol.-Animal 45, 75–90 (2009). https://doi.org/10.1007/s11626-008-9143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9143-8

Keywords

Navigation