Skip to main content

Advertisement

Log in

Characterization of tight junction proteins in cultured human urothelial cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Tight junctions (TJs) are essential for normal function of epithelia, restricting paracellular diffusion and contributing to the maintenance of cell surface polarity. Superficial cells of the urothelium develop TJs, the basis for the paracellular permeability barrier of the bladder against diffusion of urinary solutes. Focusing on the superficial cell layer of stratified cell cultures of an immortalized human ureteral cell line, TEU-2 cells, we have examined the presence of TJ and TJ-associated proteins. TEU-2 cells were treated with calcium chloride and fetal bovine serum culture conditions used to induce stratification that resembles the normal transitional epithelial phenotype. Cultures were examined for TJ and TJ-associated proteins by confocal immunofluorescence microscopy and evaluated for TJ mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR). TEU-2 cultures exhibited immunoreactivity at intercellular margins for claudins 1, 4, 5, 7, 14, and 16 whereas claudins 2, 8, and 12 were intracellular. RT-PCR corroborated the presence of these claudins at the mRNA level. The TJ-associated proteins occludin, JAM-1, and zonula occludens (ZO-1, ZO-2, and ZO-3) were localized at cell margins. We have found that numerous TJs and TJ-associated proteins are expressed in stratified TEU-2 cultures. Further, we propose TEU-2s provide a useful ureteral model for future studies on the involvement of TJs proteins in the normal and pathological physiology of the human urinary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Acharya P.; Beckel J.; Ruiz W. G.; Wang E.; Rojas R.; Birder L.; Apodaca G. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am. J. Physiol. Renal. Physiol. 287: F305–F318; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Aijaz S.; Balda M. S.; Matter K. Tight junctions: molecular architecture and function. Int. Rev. Cytol. 248: 261–298; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Angelow S.; Kim K. J.; Yu A. S. L. Claudin-8 modulates paracellular permeability to acidic and basic ions in MDCK II cells. J. Physiol. 571: 15–26; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Cross W. R.; Eardley I.; Leese H. J.; Southgate J. A biomimetic tissue from cultured normal human urothelial cells: Analysis of physiological function. Am. J. Physiol. Renal. Physiol. 289: F459–F468; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Furuse M.; Furuse K.; Sasaki H.; Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell. Biol. 153: 263–272; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Furuse M.; Hirase T.; Itoh M.; Nagafuchi A.; Yonemura S.; Tsukita S.; Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell. Biol. 123: 1777–1788; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Klumpp D. J.; Wieser A. C.; Sengupta S.; Forrestal S. G.; Batler R. A.; Schaeffer A. J. Uropathogenic E. coli potentiates type I pilus-induced apopotosis by suppressing NF-κB. Infect. Immun. 69: 6689–6695; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lewis S. A. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am. J. Physiol. Renal. Physiol. 278: F867–F874; 2000.

    PubMed  CAS  Google Scholar 

  • Li W. Y.; Huey C. L.; Yu A. S. L. Expression of claudin-7 and -8 along the mouse nephron. Am. J. Physiol. Renal. Physiol. 286: F1063–F1071; 2004.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy K. M.; Francis S. A.; McCormack J. M.; Lai J.; Rogers R. A.; Skare I. B.; Lynch R. D.; Schneeberger E. E. Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. J. Cell. Sci. 113: 3387–3398; 2000.

    PubMed  CAS  Google Scholar 

  • McCarthy K. M.; Skare I. B.; Stankewich M. C.; Furuse M.; Tsukita S.; Rogers R. A.; Lynch R. D.; Schneeberger E. E. Occludin is a functional component of the tight junction. J. Cell. Sci. 109: 2287–2298; 1996.

    PubMed  CAS  Google Scholar 

  • Rangel L. B. A.; Sherman-Baust C. A.; Wernyj R. P.; Schwartz D. R.; Cho K. R.; Morin P. J. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression. Oncogene 22: 7225–7232; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Saitou M.; Furuse M.; Sasaki H.; Schulzke J. D.; Fromm M.; Takano H.; Noda T.; Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell. 11: 4131–4142; 2000.

    PubMed  CAS  Google Scholar 

  • Simon D. B.; Lu Y.; Choate K. A.; Velazquez H.; Al-Sabban E.; Praga M.; Casari G.; Bettinelli A.; Colussi G.; Rodriquez-Soriano J.; McCredie D.; Milford D.; Sanjad S.; Lifton R. P. Paracellin-1, a renal tight junction protein required for paracellular Mg (2+) resorption. Science 285: 103–106; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Southgate J.; Hutton K. A. R.; Thomas D. F. M.; Trejdosiewicz L. K. Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab. Invest. 71: 583–594; 1994.

    PubMed  CAS  Google Scholar 

  • Turksen K.; Troy T. C. Barriers built on claudins. J. Cell. Sci. 117: 2435–2447; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Van Itallie C.; Rahner C.; Anderson J. M. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J. Clin. Invest. 107: 1319–1327; 2001.

    Article  PubMed  Google Scholar 

  • Varley C. L.; Garthwaite M. A. E.; Cross W.; Hinley J.; Trejdosiewicz L. K.; Southgate J. PPARγ-regulated tight junction development during human urothelial cytodifferentiation. J. Cell. Physiol. 208: 407–417; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Yu A. S. L.; McCarthy K. M.; Francis S. A.; McCormack J. M.; Lai J.; Rogers R. A.; Lynch R. D.; Schneeberger E. E. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am. J. Physiol. Cell. Physiol. 288: C1231–C1241; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox E. R.; Burton Q. L.; Naz S.; Riazuddin S.; Smith T. N.; Ploplis B.; Belyantseva I.; Ben-Yosef T.; Liburd N. A.; Morell R. J.; Kachar B.; Wu D. K.; Griffith A. J.; Riazuddin S.; Friedman T. B. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104: 165–172; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by National Institute of Diabetes and Digestive and Kidney Diseases Award DK66119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Rickard.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickard, A., Dorokhov, N., Ryerse, J. et al. Characterization of tight junction proteins in cultured human urothelial cells. In Vitro Cell.Dev.Biol.-Animal 44, 261–267 (2008). https://doi.org/10.1007/s11626-008-9116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9116-y

Keywords

Navigation