Skip to main content

Advertisement

Log in

Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Hessami et al. 2003; Vergés et al. 2011; Bahroudi and Talbot 2003; Zamani and Agh-Atabai 2009)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adriaenssens V, De Baets B, Goethals PLM, De Pauw N (2004) Fuzzy rule-based models for decision support in ecosystem management. Sci Total Environ 319:1–12. doi:10.1016/S0048-9697(03)00433-9

    Article  Google Scholar 

  • Afshar HK (1960) Report on the Lar earthquake of 24th April 1960. In: Proc. 2nd world conf. earthquake enging, Tokyo, pp 591–607

  • Allen MB, Saville C, Blanc E, Talebian M, Nissen E (2013) Orogenic plateau growth: expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt. Tectonics 32(2):171–190. doi:10.1002/tect.20025

    Article  Google Scholar 

  • Alvarez P, McElwain B, Thesing L, Edalath S, Kukreti A, Cohen K (2014) PD and fuzzy logic control for earthquake resilient structures. Comput Appl Eng Educ 22(1):142–152. doi:10.1002/cae.20540

    Article  Google Scholar 

  • Ambraseys NN (2001) Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophys J Int 145(2):471–485. doi:10.1046/j.0956-540x.2001.01396.x

    Article  Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Cambridge, p 219, ISBN 0 521 24112 X

  • Andalib A, Zare M, Atry F (2009) A fuzzy expert system for earthquake prediction, case study: the Zagros range. In: 3rd international conference on modeling, simulation, and applied optimization (ICMSAO), American University of Sharjah, Sharjah

  • Bahroudi A, Talbot CJ (2003) The configuration of the basement beneath the Zagros basin. J Pet Geol 26(3):257–282. doi:10.1111/j.1747-5457.2003.tb00030.x

    Article  Google Scholar 

  • Baker C, Jackson J, Priestley K (1993) Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: strike-slip faulting within a fold-and-thrust belt. Geophys J Int 115(1):41–61. doi:10.1111/j.1365-246X.1993.tb05587.x

    Article  Google Scholar 

  • Ben-Zion Y (1996) Stress, slip, and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations. J Geophys Res 101(B3):5677–5706. doi:10.1029/95jb03534

    Article  Google Scholar 

  • Berberian M (1976) Contribution to the seismotectonics of Iran (Part II). Geological Survey of Iran, Report Number 39, p 516

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241(3):193–224. doi:10.1016/0040-1951(94)00185-C

    Article  Google Scholar 

  • Berberian M, Yeats RS (2001) Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. J Struct Geol 23(2):563–584. doi:10.1016/S0191-8141(00)00115-2

    Article  Google Scholar 

  • Bilham R (2009) The seismic future of cities. Bull Earthq Eng 7(4):839–887. doi:10.1007/s10518-009-9147-0

    Article  Google Scholar 

  • de Arcangelis L, Godano C, Grasso JR, Lippiello E (2016) Statistical physics approach to earthquake occurrence and forecasting. Phys Rep 628:1–91. doi:10.1016/j.physrep.2016.03.002

    Article  Google Scholar 

  • Dewey JW, Grantz A (1973) The Ghir earthquake of April 10, 1972 in the Zagros Mountains of southern Iran: seismotectonic aspects and some results of a field reconnaissance. Bull Seismol Soc Am 63(6–1):2071–2090. doi:10.1130/0016-7606(1973)84<3137:PTATEO>2.0.CO;2

    Google Scholar 

  • Earthquake Engineering Research Institute (EERI) (2013) The Mw 6.4 Shonbeh (Bushehr), Iran earthquake. http://eeri.org/cohost/Special-EarthquakeReports/M6.4_Iran_Earthquake/index.html

  • Engdahl ER (2006) Application of an improved algorithm to high precision relocation of ISC test events. Phys Earth Planet Inter 158(1):14–18. doi:10.1016/j.pepi.2006.03.007

    Article  Google Scholar 

  • Eshghi S, Razzaghi MS (2007) Performance of cylindrical liquid storage tanks in Silakhor, Iran earthquake of March 31, 2006. Bull N Z Soc Earthq Eng 40:4

    Google Scholar 

  • Finzi Y, Hearn EH, Ben-Zion Y, Lyakhovsky V (2009) Structural properties and deformation patterns of evolving strike-slip faults: numerical simulations incorporating damage rheology. Pure Appl Geophys 166(10–11):1537–1573. doi:10.1007/s00024-009-0522-1

    Article  Google Scholar 

  • Guclu R, Yazici H (2008) Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. J Sound Vib 318(1):36–49. doi:10.1016/j.jsv.2008.03.058

    Article  Google Scholar 

  • Hamzehloo H, Rahimi H, Sarkar I, Mahood M, Alavijeh HM, Farzanegan E (2010) Modeling the strong ground motion and rupture characteristics of the March 31, 2006, Darb-e-Astane earthquake, Iran, using a hybrid of near-field SH-wave and empirical Green’s function method. J Seismol 14(2):169–195. doi:10.1007/s10950-009-9159-x

    Article  Google Scholar 

  • Hessami KH, Jamali F, Tabassi H (2003) Map of major faults of Iran, scale; 1:2,500,000. International Institute of Earthquake Engineering and Seismology, Tehran

    Google Scholar 

  • Heyburn R, Selby ND, Fox B (2013) Estimating earthquake source depths by combining surface wave amplitude spectra and teleseismic depth phase observations. Geophys J Int. doi:10.1093/gji/ggt140

    Google Scholar 

  • ISC (2015) International Seismological Centre, On-line Bulletin. Internatl. Seis. Cent., Thatcham. http://www.isc.ac.uk

  • Jackson J, Fitch T (1981) Basement faulting and the focal depths of the larger earthquakes in the Zagros Mountains (Iran). Geophys J Int 64(3):561–586. doi:10.1111/j.1365-246X.1981.tb02685.x

    Article  Google Scholar 

  • Jackson J, McKenzie D (1984) Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264. doi:10.1111/j.1365-246X.1984.tb01931.x

    Article  Google Scholar 

  • Jackson J, Haines J, Holt W (1995) The accommodation of Arabia-Eurasia plate convergence in Iran. J Geophys Res 100:15205–15219. doi:10.1029/95JB01294

    Article  Google Scholar 

  • Juang CH, Elton DJ (1986) Fuzzy logic for estimation of earthquake intensity based on building damage records. Civil Eng Syst 3(4):187–191. doi:10.1080/02630258608970443

    Article  Google Scholar 

  • Liu Y, Singh C (2011) A methodology for evaluation of hurricane impact on composite power system reliability. IEEE Trans Power Syst 26(1):145–152. doi:10.1109/TPWRS.2010.2050219

    Article  Google Scholar 

  • Lohman RB, Simons M (2005) Locations of selected small earthquakes in the Zagros Mountains. Geochem Geophys Geosyst 6(3):Q03001. doi:10.1029/2004GC000849

    Article  Google Scholar 

  • Mamdani EH (1974) Applications of fuzzy algorithm for control a simple dynamic plant. Proc Inst Electr Eng 121(12):1585–1588. doi:10.1049/piee.1974.0328

    Article  Google Scholar 

  • Moinfar AA (1975) The earthquake of Sarkhun (Bandar-Abbas, Iran) of March 7, 1975, Tehran, Iran, p 29

  • Molchan GM, Kagan YY (1992) Earthquake prediction and its optimization. J Geophys Res 97:4823–4838

    Article  Google Scholar 

  • Molinaro M, Guezou JC, Leturmy P, Eshraghi SA, de Lamotte DF (2004) The origin of changes in structural style across the Bandar Abbas syntaxis, SE Zagros (Iran). Mar Pet Geol 21(6):735–752. doi:10.1016/j.marpetgeo.2004.04.001

    Article  Google Scholar 

  • Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532:27–60. doi:10.1016/j.tecto.2012.01.022

    Article  Google Scholar 

  • NEIC (2015) National Earthquake Information Center. Earthquake information bulletin Colorado. http://earthquake.usgs.gov/regional/neic/

  • Oates T, Jensen D (1997) The effects of training set size on decision tree complexity. In: ICML ‘97 proceedings of the fourteenth international conference on machine learning, pp 254–262

  • Omidvar B, Eskandari M, Peyghaleh E (2013) Seismic damage to urban areas due to failed buried fuel pipelines case study: fire following earthquake in the city of Kermanshah, Iran. Nat Hazards 67(2):169–192. doi:10.1007/s11069-013-0554-9

    Article  Google Scholar 

  • Ramazi H, Firoozi AA (2013) Seismotectonics and seismicity of the Silakhor region, Iran. J Geol Soc India 82(3):283–289. doi:10.1007/s12594-013-0151-2

    Article  Google Scholar 

  • Ramazi H, Hosseinnejad M (2009) The Silakhor (Iran) earthquake of 31 March 2006, from an engineering and seismological point of view. Seismol Res Lett 80(2):224–232. doi:10.1785/gssrl.80.2.224

    Article  Google Scholar 

  • Ramsey LA, Walker RT, Jackson J (2008) Fold evolution and drainage development in the Zagros Mountains of Fars province, SE Iran. Basin Res 20(1):23–48. doi:10.1111/j.1365-2117.2007.00342.x

    Article  Google Scholar 

  • Regard V, Bellier O, Thomas JC, Abbassi MR, Mercier J, Shabanian E, Soleymani S (2004) Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: a transition between collision and subduction through a young deforming system. Tectonics 23:4. doi:10.1029/2003TC001599

    Article  Google Scholar 

  • Şen Z (2010) Rapid visual earthquake hazard evaluation of existing buildings by fuzzy logic modeling. Expert Syst Appl 37(8):5653–5660. doi:10.1016/j.eswa.2010.02.046

    Article  Google Scholar 

  • Sepehr M, Cosgrove JW (2005) Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran. Tectonics 24:5. doi:10.1029/2004TC001725

    Article  Google Scholar 

  • Sepehr M, Cosgrove JW (2007) The role of major fault zones in controlling the geometry and spatial organization of structures in the Zagros Fold-Thrust Belt. Geol Soc Lond Spec Publ 272(1):419–436. doi:10.1144/GSL.SP.2007.272.01.21

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1):17–33. doi:10.1016/S0012-821X(01)00588-X

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control systems. IEEE Trans Syst Man Cybern SMC-15(1):116–132. doi:10.1109/TSMC.1985.6313399

    Article  Google Scholar 

  • Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros Mountains of Iran. Geophys J Int 156:506–526. doi:10.1111/j.1365-246X.2004.02092.x

    Article  Google Scholar 

  • Tatar M, Hatzfeld D, Ghafori-Ashtiany M (2004) Tectonics of the Central Zagros (Iran) deduced from microearthquakes seismicity. Geophys J Int 156:255–266. doi:10.1111/j.1365-246X.2003.02145.x

    Article  Google Scholar 

  • Tavakoli F, Walpersdorf A, Authemayou C, Nankali HR, Hatzfeld D, Tatar M, Cotte N (2008) Distribution of the right-lateral strike–slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): evidence from present-day GPS velocities. Earth Planet Sci Lett 275(3):342–347. doi:10.1016/j.epsl.2008.08.030

    Article  Google Scholar 

  • Tchalenko JS, Braud J (1974) Seismicity and structure of the Zagros (Iran): the Main Recent Fault between 33 and 35 N. Philos Trans R Soc Lond Ser A Math Phys Sci. doi:10.1098/rsta.1974.0044

    Google Scholar 

  • Tesfamariam S, Saatcioglu M (2010) Seismic vulnerability assessment of reinforced concrete buildings using hierarchical fuzzy rule base modeling. Earthq Spectra 26(1):235–256. doi:10.1193/1.3280115

    Article  Google Scholar 

  • Tikk D, Csaba Johanyák Z, Kovács S, Wong KW (2011) Fuzzy rule interpolation and extrapolation techniques: criteria and evaluation guidelines. J Adv Comput Intell Intell Inform 15(3):254–263. doi:10.20965/jaciii.2011.p0254

    Article  Google Scholar 

  • Tsukamoto Y (1979) Advances in fuzzy set theory and applications, chapter: an approach to fuzzy reasoning method. North-Holland, Amsterdam, pp 137–149

    Google Scholar 

  • Vergés J, Saura E, Casciello E, Fernàndez M, Villaseñor A, Jiménez-Munt I, Garcia-Castellanos D (2011) Crustal-scale cross-sections across the NW Zagros belt: implications for the Arabian margin reconstruction. Geol Mag 148(5–6):739–761. doi:10.1017/S0016756811000331

    Article  Google Scholar 

  • Walker RT, Bergman E, Jackson J, Ghorashi M, Talebian M (2005) The 2002 June 22 Changureh (Avaj) earthquake in Qazvin province, northwest Iran: epicentral relocation, source parameters, surface deformation and geomorphology. Geophys J Int 160(2):707–720. doi:10.1111/j.1365-246X.2005.02516.x

    Article  Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:374–383. doi:10.1785/gssrl.72.3.373

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of complete reporting in earthquake catalogs: examples from alaska, the western united states, and japan. Bull Seismol Soc Am 90:859–869. doi:10.1785/0119990114

    Article  Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am. doi:10.1785/0120040007

    Google Scholar 

  • Yamini-Fard F, Hatzfeld D, Tatar M, Mokhtari M (2006) Microearthquake seismicity at the intersection between the Kazerun fault and the Main Recent Fault (Zagros, Iran). Geophys J Int 166(1):186–196. doi:10.1111/j.1365-246X.2006.02891.x

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353. doi:10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 1:28–44. doi:10.1109/TSMC.1973.5408575

    Article  Google Scholar 

  • Zamani A, Agh-Atabai M (2009) Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach. J Geodyn 47(5):271–279. doi:10.1016/j.jog.2009.01.003

    Article  Google Scholar 

  • Zamani A, Sami A, Khalili M (2012) Multivariate rule-based seismicity map of Iran: a data-driven model. Bull Earthq Eng 10(6):1667–1683. doi:10.1007/s10518-012-9386-3

    Article  Google Scholar 

  • Zamani A, Sorbi MR, Safavi AA (2013) Application of neural network and ANFIS model for earthquake occurrence in Iran. Earth Sci Inf 6(2):71–85. doi:10.1007/s12145-013-0112-8

    Article  Google Scholar 

  • Zamani A, Kolahi Azar AP, Safavi AA (2014) Wavelet-based multifractal analysis of earthquakes temporal distribution in Mammoth Mountain volcano, Mono County, Eastern California. Acta Geophys 62(3):585–607. doi:10.2478/s11600-013-0184-3

    Article  Google Scholar 

  • Zamani A, Farahi S, Boostani R, Hassani-Saadi H (2015) Geoenvironmental zoning evaluation and optimization. Earth Sci Inf 8(3):583–593. doi:10.1007/s12145-014-01840

    Article  Google Scholar 

  • Zechar JD (2010) Evaluating earthquake predictions and earthquake forecasts: a guide for students and new researchers. doi:10.5078/corssa-77337879. http://www.corssa.org

  • Zhang Y, Oldenburg CM, Finsterle S (2010) Percolation-theory and fuzzy rule-based probability estimation of fault leakage at geologic carbon sequestration sites. Environ Earth Sci 59:1447–1459. doi:10.1007/s12665-009-0131-4

    Article  Google Scholar 

  • Zhou SM, Gan JQ (2008) Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets Syst 159(23):3091–3131. doi:10.1016/j.fss.2008.05.016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iranian National Institute for Oceanography and Atmospheric Science and Center of Excellence for Environmental Geo-hazards, and the Research Council of Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedigheh Farahi Ghasre Aboonasr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahi Ghasre Aboonasr, S., Zamani, A., Razavipour, F. et al. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model. Acta Geophys. 65, 589–605 (2017). https://doi.org/10.1007/s11600-017-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0055-4

Keywords

Navigation