Skip to main content
Log in

Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation

  • Review
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ludwig MG, Vanek M, Guerini D, et al. Proton-sensing G-protein-coupled receptors. Nature, 2003,425(6953):93–98

    Article  CAS  PubMed  Google Scholar 

  2. Cai H, Wang X, Zhang Z, et al. Moderate l-lactate administration suppresses adipose tissue macrophage M1 polarization to alleviate obesity-associated insulin resistance. J Biol Chem, 2022,298(4):101768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li R, Xiao X, Yan Y, et al. GPRASP1 loss-of-function links to arteriovenous malformations by endothelial activating GPR4 signals. Brain, 2024,147(4):1571–1586

    Article  PubMed  Google Scholar 

  4. Singh LS, Berk M, Oates R, et al. Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst, 2007,99(17):1313–1327

    Article  CAS  PubMed  Google Scholar 

  5. Xue S, Su Z, Liu D. Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev, 2023,90:101993

    Article  CAS  PubMed  Google Scholar 

  6. Ouyang S, Li Y, Wu X, et al. GPR4 signaling is essential for the promotion of acid-mediated angiogenic capacity of endothelial progenitor cells by activating STAT3/VEGFA pathway in patients with coronary artery disease. Stem Cell Res Ther, 2021,12(1):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Guo B, Wang J, et al. Ovarian cancer G protein coupled receptor 1 suppresses cell migration of MCF7 breast cancer cells via a Galpha12/13-Rho-Rac1 pathway. J Mol Signal, 2013,8(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bell TJ, Nagel DJ, Woeller CF, et al. Ogerin mediated inhibition of TGF-β(1) induced myofibroblast differentiation is potentiated by acidic pH. PLoS One, 2022,17(7):e0271608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma AL, Meitei PM, Machathoibi TC, et al. Ovarian cancer G protein-coupled receptor 1 inhibits A549 cells migration through casein kinase 2α intronless gene and neutral endopeptidase. BMC Cancer, 2022,22(1):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joost P, Methner A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol, 2002,3(11):RESEARCH0063

    Article  PubMed  PubMed Central  Google Scholar 

  11. Foord SM, Bonner TI, Neubig RR, et al. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev, 2005,57(2):279–288

    Article  CAS  PubMed  Google Scholar 

  12. Fredriksson R, Lagerström MC, Lundin LG, et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol, 2003,63(6):1256–1272

    Article  CAS  PubMed  Google Scholar 

  13. Wheatley M, Wootten D, Conner MT, et al. Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol, 2012,165(6):1688–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim HR, Xu J, Maeda S, et al. Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family. Nat Commun, 2020,11(1):3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith SO. Deconstructing the transmembrane core of class A G protein-coupled receptors. Trends Biochem Sci, 2021,46(12):1017–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rowe JB, Kapolka NJ, Taghon GJ, et al. The evolution and mechanism of GPCR proton sensing. J Biol Chem, 2021,296:100167

    Article  CAS  PubMed  Google Scholar 

  17. Wang JQ, Kon J, Mogi C, et al. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem, 2004,279(44):45626–45633

    Article  CAS  PubMed  Google Scholar 

  18. Radu CG, Nijagal A, McLaughlin J, et al. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci USA, 2005,102(5):1632–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi JW, Lee SY, Choi Y. Identification of a putative G proteincoupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol, 1996,168(1):78–84

    Article  CAS  PubMed  Google Scholar 

  20. Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014,13(2):397–406

    Article  CAS  PubMed  Google Scholar 

  21. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science, 1991,252(5007):802–808

    Article  CAS  PubMed  Google Scholar 

  22. An S, Tsai C, Goetzl EJ. Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett, 1995,375(1–2):121–124

    Article  CAS  PubMed  Google Scholar 

  23. Li R, Guan Z, Bi S, et al. The proton-activated G protein-coupled receptor GPR4 regulates the development of osteoarthritis via modulating CXCL12/CXCR7 signaling. Cell Death Dis, 2022,13(2):152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu JP, Nakakura T, Tomura H, et al. Each one of certain histidine residues in G-protein-coupled receptor GPR4 is critical for extracellular proton-induced stimulation of multiple G-protein-signaling pathways. Pharmacol Res, 2010,61(6):499–505

    Article  CAS  PubMed  Google Scholar 

  25. Tobo M, Tomura H, Mogi C, et al. Previously postulated “ligand-independent” signaling of GPR4 is mediated through proton-sensing mechanisms. Cell Signal, 2007,19(8):1745–1753

    Article  CAS  PubMed  Google Scholar 

  26. Chen A, Dong L, Leffler NR, et al. Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS One, 2011,6(11):e27586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dong L, Li Z, Leffler NR, et al. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis. PLoS One, 2013,8(4):e61991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okito A, Nakahama KI, Akiyama M, et al. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment. Biochem Biophys Res Commun, 2015,458(2):435–440

    Article  CAS  PubMed  Google Scholar 

  29. Krewson EA, Sanderlin EJ, Marie MA, et al. The Proton-Sensing GPR4 Receptor Regulates Paracellular Gap Formation and Permeability of Vascular Endothelial Cells. iScience, 2020,23(2):100848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong L, Krewson EA, Yang LV. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells. Int J Mol Sci, 2017,18(2):278

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wei WC, Bianchi F, Wang YK, et al. Coincidence Detection of Membrane Stretch and Extracellular pH by the Proton-Sensing Receptor OGR1 (GPR68). Curr Biol, 2018,28(23):3815–3823

    Article  CAS  PubMed  Google Scholar 

  32. de Vallière C, Cosin-Roger J, Simmen S, et al. Hypoxia Positively Regulates the Expression of pH-Sensing G-Protein-Coupled Receptor OGR1 (GPR68). Cell Mol Gastroenterol Hepatol, 2016,2(6):796–810

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pera T, Deshpande DA, Ippolito M, et al. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines. FASEB J, 2018,32(2):862–874

    Article  CAS  PubMed  Google Scholar 

  34. Saxena H, Deshpande DA, Tiegs BC, et al. The GPCR OGR1 (GPR68) mediates diverse signalling and contraction of airway smooth muscle in response to small reductions in extracellular pH. Br J Pharmacol, 2012,166(3):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maeyashiki C, Melhem H, Hering L, et al. Activation of pH-Sensing Receptor OGR1 (GPR68) Induces ER Stress Via the IRE1α/JNK Pathway in an Intestinal Epithelial Cell Model. Sci Rep, 2020,10(1):1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kotake M, Sato K, Mogi C, et al. Acidic pH increases cGMP accumulation through the OGR1/phospholipase C/Ca(2+)/neuronal NOS pathway in N1E-115 neuronal cells. Cell Signal, 2014,26(11):2326–2332

    Article  CAS  PubMed  Google Scholar 

  37. Jiang Z, Zhu J, Zhao C, et al. Corrigendum to (Shear Stress Regulates the SNAP23-mediated Endothelial secretion of VWF through the GPR68/PKA/vimentin Mechanotransduction Pathway) (BBRC, 2022,607:166–173]. Biochem Biophys Res Commun, 2022,609:195–196

    Article  CAS  PubMed  Google Scholar 

  38. Zhu C, Wang L, Zhu J, et al. OGR1 negatively regulates β-casein and triglyceride synthesis and cell proliferation via the PI3K/AKT/mTOR signaling pathway in goat mammary epithelial cells. Anim Biotechnol, 2021,32(5):627–636

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, de Vallière C, Imenez Silva PH, et al. The Proton-activated Receptor GPR4 Modulates Intestinal Inflammation. J Crohns Colitis, 2018,12(3):355–368

    Article  PubMed  Google Scholar 

  40. Williams CH, Neitzel LR, Cornell J, et al. GPR68-ATF4 signaling is a novel prosurvival pathway in glioblastoma activated by acidic extracellular microenvironment. Exp Hematol Oncol, 2024,13(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xie L, McKenzie CI, Qu X, et al. pH and Proton Sensor GPR65 Determine Susceptibility to Atopic Dermatitis. J Immunol, 2021,207(1):101–109

    Article  CAS  PubMed  Google Scholar 

  42. Xu X, Bu B, Tian H, et al. MicroRNAs combined with the TLR4/TDAG8 mRNAs and proinflammatory cytokines are biomarkers for the rapid diagnosis of sepsis. Mol Med Rep, 2022,26(5):334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mercier V, Boucher G, Devost D, et al. IBD-associated G protein-coupled receptor 65 variant compromises signalling and impairs key functions involved in inflammation. Cell Signal, 2022,93:110294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang K, Zhang MX, Meng XX, et al. Targeting GPR65 alleviates hepatic inflammation and fibrosis by suppressing the JNK and NF-κB pathways. Mil Med Res, 2023,10(1):56

    PubMed  PubMed Central  Google Scholar 

  45. Lassen KG, McKenzie CI, Mari M, et al. Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk. Immunity, 2016,44(6):1392–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang XP, Karpiak J, Kroeze WK, et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature, 2015,527(7579):477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin R, Wu W, Chen H, et al. GPR65 promotes intestinal mucosal Th1 and Th17 cell differentiation and gut inflammation through downregulating NUAK2. Clin Transl Med, 2022,12(3):e771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin Y, Sato K, Tobo A, et al. Inhibition of interleukin-1β production by extracellular acidification through the TDAG8/cAMP pathway in mouse microglia. J Neurochem, 2014,129(4):683–695

    Article  CAS  PubMed  Google Scholar 

  49. Ma XD, Hang LH, Shao DH, et al. TDAG8 activation attenuates cerebral ischaemia-reperfusion injury via Akt signalling in rats. Exp Neurol, 2017,293:115–123

    Article  CAS  PubMed  Google Scholar 

  50. Sayama K, Yuki K, Sugata K, et al. Carbon dioxide inhibits UVB-induced inflammatory response by activating the proton-sensing receptor, GPR65, in human keratinocytes. Sci Rep, 2021,11(1):379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mao J, Feng Y, Zheng Y, et al. GPR65 inhibits human trophoblast cell adhesion through upregulation of MYLK and downregulation of fibronectin via cAMP-ERK signaling in a low pH environment. Cell Commun Signal, 2023,21(1):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Onozawa Y, Komai T, Oda T. Activation of T cell death-associated gene 8 attenuates inflammation by negatively regulating the function of inflammatory cells. Eur J Pharmacol, 2011,654(3):315–319

    Article  CAS  PubMed  Google Scholar 

  53. Kottyan LC, Collier AR, Cao KH, et al. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner. Blood, 2009,114(13):2774–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weng Z, Fluckiger AC, Nisitani S, et al. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc Natl Acad Sci USA, 1998,95(21):12334–12339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kabarowski JH, Feramisco JD, Le LQ, et al. Direct genetic demonstration of G alpha 13 coupling to the orphan G protein-coupled receptor G2A leading to RhoA-dependent actin rearrangement. Proc Natl Acad Sci USA, 2000,97(22):12109–12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kabarowski JH, Zhu K, Le LQ, et al. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science, 2001,293(5530):702–705

    Article  CAS  PubMed  Google Scholar 

  57. Hasegawa H, Lei J, Matsumoto T, et al. Lysophosphatidylcholine enhances the suppressive function of human naturally occurring regulatory T cells through TGF-β production. Biochem Biophys Res Commun, 2011,415(3):526–531

    Article  CAS  PubMed  Google Scholar 

  58. Mogi C, Tobo M, Tomura H, et al. Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages. J Immunol, 2009,182(5):3243–3251

    Article  CAS  PubMed  Google Scholar 

  59. Chong YH, Shin SA, Lee HJ, et al. Molecular mechanisms underlying cyclic AMP inhibition of macrophage dependent TNF-alpha production and neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer’s amyloid precursor protein. J Neuroimmunol, 2002,133(1–2):160–174

    Article  CAS  PubMed  Google Scholar 

  60. Tcymbarevich I, Richards SM, Russo G, et al. Lack of the pH-sensing Receptor TDAG8 [GPR65] in Macrophages Plays a Detrimental Role in Murine Models of Inflammatory Bowel Disease. J Crohns Colitis, 2019,13(2):245–258

    Article  PubMed  Google Scholar 

  61. de Vallière C, Cosin-Roger J, Simmen S, et al. Hypoxia Positively Regulates the Expression of pH-Sensing G-Protein-Coupled Receptor OGR1 (GPR68). Cell Mol Gastroenterol Hepatol, 2016,2(6):796–810

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ichimonji I, Tomura H, Mogi C, et al. Extracellular acidification stimulates IL-6 production and Ca(2+) mobilization through proton-sensing OGR1 receptors in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2010,299(4):L567–L577

    Article  CAS  PubMed  Google Scholar 

  63. Yassini N, Sprenger J, Pastor Arroyo EM, et al. Ovarian cancer G protein-coupled receptor 1 deficiency exacerbates crystal deposition and kidney injury in oxalate nephropathy in female mice. Clin Sci (Lond), 2023,137(14):1013–1025

    Article  CAS  PubMed  Google Scholar 

  64. Yan L, Singh LS, Zhang L, et al. Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene, 2014,33(2):157–164

    Article  CAS  PubMed  Google Scholar 

  65. Umemura N, Saio M, Suwa T, et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol, 2008,83(5):1136–1144

    Article  CAS  PubMed  Google Scholar 

  66. Bolick DT, Skaflen MD, Johnson LE, et al. G2A deficiency in mice promotes macrophage activation and atherosclerosis. Circ Res, 2009,104(3):318–327

    Article  CAS  PubMed  Google Scholar 

  67. Kern K, Schäfer SMG, Cohnen J, et al. The G2A Receptor Controls Polarization of Macrophage by Determining Their Localization Within the Inflamed Tissue. Front Immunol, 2018,9:2261

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhu X, Mose E, Hogan SP, et al. Differential eosinophil and mast cell regulation: mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65. Am J Physiol Gastrointest Liver Physiol, 2014,306(11):G974–G982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu S, Chirkov YY, Horowitz JD. Neutrophil-Initiated Myocardial Inflammation and Its Modulation by B-Type Natriuretic Peptide: A Potential Therapeutic Target. Int J Mol Sci, 2018;20(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  70. Murata N, Mogi C, Tobo M, et al. Inhibition of superoxide anion production by extracellular acidification in neutrophils. Cell Immunol, 2009,259(1):21–26

    Article  CAS  PubMed  Google Scholar 

  71. Tsurumaki H, Mogi C, Aoki-Saito H, et al. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury. Int J Mol Sci, 2015,16(12):28931–28942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khan SY, McLaughlin NJD, Kelher MR, et al. Lysophosphatidylcholines activate G2A inducing G(αi)−1-/G(αq/)11- Ca2(+) flux, G(βγ)-Hck activation and clathrin/β-arrestin-1/GRK6 recruitment in PMNs. Biochem J, 2010,432(1):35–45

    Article  CAS  PubMed  Google Scholar 

  73. Frasch SC, Fernandez-Boyanapalli RF, Berry KAZ, et al. Neutrophils regulate tissue Neutrophilia in inflammation via the oxidant-modified lipid lysophosphatidylserine. J Biol Chem, 2013,288(7):4583–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tosa N, Murakami M, Jia WY, et al. Critical function of T cell death-associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int Immunol, 2003,15(6):741–749

    Article  CAS  PubMed  Google Scholar 

  75. Chen X, Jaiswal A, Costliow Z, et al. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat Immunol, 2022,23(7):1063–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sanderlin EJ, Leffler NR, Lertpiriyapong K, et al. GPR4 deficiency alleviates intestinal inflammation in a mouse model of acute experimental colitis. Biochim Biophys Acta Mol Basis Dis, 2017,1863(2):569–584

    Article  CAS  PubMed  Google Scholar 

  77. Aoki H, Mogi C, Hisada T, et al. Proton-sensing ovarian cancer G protein-coupled receptor 1 on dendritic cells is required for airway responses in a murine asthma model. PLoS One, 2013,8(11):e79985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aoki H, Mogi C, Okajima F. Ionotropic and metabotropic proton-sensing receptors involved in airway inflammation in allergic asthma. Mediators Inflamm, 2014,2014:712962

    Article  PubMed  PubMed Central  Google Scholar 

  79. D’Souza CA, Zhao FL, Li X, et al. OGR1/GPR68 Modulates the Severity of Experimental Autoimmune Encephalomyelitis and Regulates Nitric Oxide Production by Macrophages. PLoS One, 2016,11(2):e0148439

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dai SP, Hsieh WS, Chen CH, et al. TDAG8 deficiency reduces satellite glial number and pro-inflammatory macrophage number to relieve rheumatoid arthritis disease severity and chronic pain. J Neuroinflammation, 2020,17(1):170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gaublomme JT, Yosef N, Lee Y, et al. Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell, 2015,163(6):1400–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Osmers I, Smith SS, Parks BW, et al. Deletion of the G2A receptor fails to attenuate experimental autoimmune encephalomyelitis. J Neuroimmunol, 2009,207(1–2):18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li J, Chen K, Zhao Z. The protective effects of NE 52-QQ57 against interleukin-33-induced inflammatory response in activated synovial mast cells. J Biochem Mol Toxicol, 2022,36(8):e23116

    Article  CAS  PubMed  Google Scholar 

  84. Velcicky J, Miltz W, Oberhauser B, et al. Development of Selective, Orally Active GPR4 Antagonists with Modulatory Effects on Nociception, Inflammation, and Angiogenesis. J Med Chem 2017,60(9):3672–3683

    Article  CAS  PubMed  Google Scholar 

  85. Onozawa Y, Fujita Y, Kuwabara H, et al. Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro. Eur J Pharmacol, 2012,683(1–3):325–331

    Article  CAS  PubMed  Google Scholar 

  86. Sanderlin EJ, Marie M, Velcicky J, et al. Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model. Eur J Pharmacol, 2019,852:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stalewski J, Shih AY, Papazyan R, et al. pH Dependence of a GPR4 Selective Antagonist Hampers Its Therapeutic Potential. J Pharmacol Exp Ther, 2023,386(1):35–44

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Wang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This study was supported by the National Nature Science Foundation of China (No. 81873694), the Key Research and Development Program of Hubei Province (No. 2022BCA005), and Knowledge Innovation Program of Wuhan Basic Research (No. 2022020801010446).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ms., Wang, Xh. & Wang, H. Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation. CURR MED SCI (2024). https://doi.org/10.1007/s11596-024-2872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11596-024-2872-4

Key words

Navigation