Skip to main content
Log in

Efficacy of Bispecific Antibody Targeting EpCAM and CD3 for Immunotherapy in Ovarian Cancer Ascites: An Experimental Study

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

This study aimed to explore the value of M701, targeting epithelial cell adhesion molecule (EpCAM) and CD3, in the immunotherapy of ovarian cancer ascites by the in vitro assay.

Methods

The expression of EpCAM in ovarian cancer tissues was analyzed by databases. The EpCAM expression and immune cell infiltration in different foci of ovarian cancer were detected by 8-channel flow cytometry. The toxic effect of M701 on OVCAR3 was tested using the in vitro cytotoxicity assay. The 3D cell culture and drug intervention experiments were performed to evaluate the therapeutic effect of M701 in ovarian cancer specimens. Flow cytometry was used to examine the effect of M701 on the binding of immune cells to tumor cells and the activation capacity of T cells.

Results

The results of the bioinformatic analysis showed that the expression of EpCAM in ovarian cancer tissue was significantly higher than that in normal ovarian tissue. The 8-channel flow cytometry of clinical samples showed that the EpCAM expression and lymphocyte infiltration were significantly heterogeneous among ovarian cancer patients and lesions at different sites. The in vitro experiment results showed that M701 had a significant killing effect on OVCAR3 cells. M701 also obviously killed primary tumor cells derived from some patients with ovarian cancer ascites. M701 could mediate the binding of CD3+ T cells to EpCAM+ tumor cells and induce T cell activation in a dose-dependent manner.

Conclusion

M701 showed significant inhibitory activity on tumor cells derived from ovarian cancer ascites, which had a promising application in immunotherapy for patients with ovarian cancer ascites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021,71(3):209–249

    Article  PubMed  Google Scholar 

  2. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med, 2017,14(1):9–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferriss JS, Java JJ, Bookman MA, et al. Ascites predicts treatment benefit of bevacizumab in front-line therapy of advanced epithelial ovarian, fallopian tube and peritoneal cancers: An NRG Oncology/GOG study. Gynecol Oncol, 2015,139(1):17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baert T, Ferrero A, Sehouli J, et al. The systemic treatment of recurrent ovarian cancer revisited. Ann Oncol, 2021,32(6):710–725

    Article  CAS  PubMed  Google Scholar 

  5. den Ouden JE, Zaman GJR, Dylus J, et al. Chemotherapy sensitivity testing on ovarian cancer cells isolated from malignant ascites. Oncotarget, 2020,11(49):4570–4581

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kipps E, Tan DSP, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer, 2013,13(4):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallego A, Mendiola M, Hernando B, et al. Prognostic markers of inflammation in endometrioid and clear cell ovarian cancer. Int J Gynecol Cancer, 2022,32(8):1009–1016

    Article  PubMed  Google Scholar 

  8. Jlassi A, Manai M, Morjen M, et al. VISTA+/CD8+status correlates with favorable prognosis in Epithelial ovarian cancer. PLoS One, 2023,18(3):e0278849–e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ukita M, Hamanishi J, Yoshitomi H, et al. CXCL13-producing CD4+T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer. JCI Insight, 2022,7(12):e157215

    Article  PubMed  PubMed Central  Google Scholar 

  10. Amblard E, Soumelis V. Context-Dependent Effects Explain Divergent Prognostic Roles of Tregs in Cancer. Cancers, 2022,14(12):2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhandaru M, Rotte A. Monoclonal Antibodies for the Treatment of Melanoma: Present and Future Strategies. Methods Mol Biol, 2019,1904:83–108

    Article  CAS  PubMed  Google Scholar 

  12. Wudhikarn K, King AC, Geyer MB, et al. Outcomes of relapsed B-cell acute lymphoblastic leukemia after sequential treatment with blinatumomab and inotuzumab. Blood Adv, 2022,6(5):1432–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science, 2018,359(6382):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015,348(6230):62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med, 2018,7(9):4509–4516

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morand S, Devanaboyina M, Staats H, et al. Ovarian Cancer Immunotherapy and Personalized Medicine. Int J Mol Sci, 2021,22(12):6532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mashhadi SMY, Kazemimanesh M, Arashkia A, et al. Shedding light on the EpCAM: An overview. J Cell Physiol, 2019,234(8):12569–12580

    Article  Google Scholar 

  18. Patriarca C, Macchi RM, Marschner AK, et al. Epithelial cell adhesion molecule expression (CD326) in cancer: A short review. Cancer Treat Rev, 2012,38(1):68–75

    Article  CAS  PubMed  Google Scholar 

  19. Herreros-Pomares A, Aguilar-Gallardo C, Calabuig-Farinas S, et al. EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale. Crit Rev Oncol Hematol, 2018,126:52–63

    Article  PubMed  Google Scholar 

  20. Seeber A, Untergasser G, Spizzo G, et al. Predominant expression of truncated EpCAM is associated with a more aggressive phenotype and predicts poor overall survival in colorectal cancer. Int J Cancer, 2016,139(3):657–663

    Article  CAS  PubMed  Google Scholar 

  21. Massoner P, Thomm T, Mack B, et al. EpCAM is overexpressed in local and metastatic prostate cancer, suppressed by chemotherapy and modulated by MET-associated miRNA-200c/205. Br J Cancer, 2014,111(5):955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spizzo G, Went P, Dirnhofer S, et al. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecol Oncol, 2006,103(2): 483–488

    Article  CAS  PubMed  Google Scholar 

  23. Brunner A, Prelog M, Verdorfer I, et al. EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. J Clin Pathol, 2008,61(3):307–310

    Article  CAS  PubMed  Google Scholar 

  24. Fong D, Moser P, Kasal A, et al. Loss of membranous expression of the intracellular domain of EpCAM is a frequent event and predicts poor survival in patients with pancreatic cancer. Histopathology, 2014,64(5):683–692

    Article  PubMed  Google Scholar 

  25. Lee SJ, Chung KY, Kwon JE, et al. Expression of EpCAM in adenoid cystic carcinoma. Pathology, 2018,50(7):737–741

    Article  CAS  PubMed  Google Scholar 

  26. Gaghana LO, Miskad U, Cangara MH, et al. The Relationship Between Expression of EpCAM Cancer Stem Cell Marker with Histopathological Grading, Lymphovascular Invasion, and Metastases in Colorectal Adenocarcinoma. Asian Pac J Cancer Prev, 2023,24(3):929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Fei F, Song Y, et al. Polymorphisms of EpCAM gene and prognosis for non-small-cell lung cancer in Han Chinese. Cancer Sci, 2014,105(1):89–96

    Article  CAS  PubMed  Google Scholar 

  28. Liao Y, Wu M, Jia Y, et al. EpCAM as a Novel Biomarker for Survivals in Prostate Cancer Patients. Front Cell Dev Biol, 2022,10:843604

    Article  PubMed  PubMed Central  Google Scholar 

  29. Spizzo G, Fong D, Wurm M, et al. EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis. J Clin Pathol, 2011, 64(5):415–420

    Article  PubMed  Google Scholar 

  30. van der Fels CAM, Rosati S, de Jong IJ. EpCAM Expression in Lymph Node Metastases of Urothelial Cell Carcinoma of the Bladder: A Pilot Study. Int J Mol Sci, 2017,18(8):1802

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Li J, Cadilha BL, et al. Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Sci Adv, 2019,5(6):eaav4275

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bellone S, Siegel ER, Cocco E, et al. Overexpression of Epithelial Cell Adhesion Molecule in Primary, Metastatic, and Recurrent/Chemotherapy-Resistant Epithelial Ovarian Cancer Implications for Epithelial Cell Adhesion Molecule-Specific Immunotherapy. Int J Gynecol Cancer, 2009,19(5):860–866

    Article  PubMed  Google Scholar 

  33. Fu J, Shang Y, Qian Z, et al. Chimeric antigen receptor-T (CAR-T) cells targeting epithelial cell adhesion molecule (EpCAM) can inhibit tumor growth in ovarian cancer mouse model. J Vet Med Sci, 2021,83(2):241–247

    Article  CAS  PubMed  Google Scholar 

  34. van den Brand D, van Lith SAM, de Jong JM, et al. EpCAM-Binding DARPins for Targeted Photodynamic Therapy of Ovarian Cancer. Cancers, 2020, 12(7):1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee S, Ahn HJ. Anti-EpCAM-conjugated adeno-associated virus serotype 2 for systemic delivery of EGFR shRNA: Its retargeting and antitumor effects on OVCAR3 ovarian cancer in vivo. Acta Biomater, 2019,91:258–269

    Article  CAS  PubMed  Google Scholar 

  36. Zheng J, Zhao S, Yu X, et al. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics, 2017,7(5):1373–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Qiao Y, Zong H, et al. IgG-like Bispecific Antibody CD3xEpCAM Generated by Split Intein Against Colorectal Cancer. Front Pharmacol, 2022,13: 803059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol, 2015,93(3):290–296

    Article  CAS  PubMed  Google Scholar 

  39. Seimetz D. Novel Monoclonal Antibodies for Cancer Treatment: The Trifunctional Antibody Catumaxomab (Removab (R)). J Cancer, 2011,2:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frampton JE. Catumaxomab in Malignant Ascites. Drugs, 2012,72(10): 1399–1410

    Article  CAS  PubMed  Google Scholar 

  41. Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer, 2010,127(9): 2209–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. English DP, Bellone S, Schwab CL, et al. Solitomab, an Epithelial Cell Adhesion Molecule/CD3 Bispecific Antibody (BiTE), Is Highly Active Against Primary Chemotherapy-Resistant Ovarian Cancer Cell Lines In Vitro and Fresh Tumor Cells Ex Vivo. Cancer, 2015,121(3):403–412

    Article  CAS  PubMed  Google Scholar 

  43. Song L, Xue J, Zhang J, et al. Mechanistic prediction of first-in-human dose for bispecific CD3/EpCAM T-cell engager antibody M701, using an integrated PK/PD modeling method. Eur J Pharm Sci, 2021,158:105584

    Article  CAS  PubMed  Google Scholar 

  44. Zhang CM, Yu LY, Lv JF, et al. Effects of immuno-related gene polymorphisms on a bispecific antibody targeting colorectal cancer cell. Per Med, 2018,15(3):167–179

    Article  CAS  PubMed  Google Scholar 

  45. Giornelli GH. Management of relapsed ovarian cancer: a review. Springerplus, 2016,5(1):1197

    Article  PubMed  PubMed Central  Google Scholar 

  46. Keyvani V, Farshchian M, Esmaeili SA, et al. Ovarian cancer stem cells and targeted therapy. J Ovarian Res, 2019,12(1):120

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ning F, Cole CB, Annunziata CM. Driving Immune Responses in the Ovarian Tumor Microenvironment. Front Oncol, 2021,10:604084

    Article  PubMed  PubMed Central  Google Scholar 

  48. Melichar B, Touskova M, Tosner J, et al. The phenotype of ascitic fluid lymphocytes in patients with ovarian carcinoma and other primaries. Onkologie, 2001,24(2):156–160

    CAS  PubMed  Google Scholar 

  49. Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review. Biochim Biophys Acta Rev Cancer, 2020,1874(2):188436

    Article  CAS  PubMed  Google Scholar 

  50. Landskron J, Helland O, Torgersen KM, et al. Activated regulatory and memory T-cells accumulate in malignant ascites from ovarian carcinoma patients. Cancer Immunol Immunother, 2015,64(3):337–347

    Article  CAS  PubMed  Google Scholar 

  51. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8(+) tumor-infiltrating lymphocytes and a high CD8(+)/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. PNAS, 2005,102(51):18538–18543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med, 2003,348(3): 203–213

    Article  CAS  PubMed  Google Scholar 

  53. Linke R, Klein A, Seimetz D. Catumaxomab Clinical development and future directions. Mabs, 2010,2(2):129–136

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hong R, Zhou Y, Tian X, et al. Selective inhibition of IDO1, D-1-methyl-tryptophan (D-1MT), effectively increased EpCAM/CD3-bispecific BiTE antibody MT110 efficacy against IDO1(hi)breast cancer via enhancing immune cells activity. Int Immunopharmacol, 2018,54:118–124

    Article  CAS  PubMed  Google Scholar 

  55. Ferrari F, Bellone S, Black J, et al. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE (R)), is highly active against primary uterine and ovarian carcinosarcoma cell lines in vitro. J Exp Clin Cancer Res, 2015,34:123

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-xuan Wang or Xiang-yi Ma.

Additional information

Conflict of Interest Statement

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Shi-xuan WANG is a member of the Editorial Board for Current Medical Science. The paper was handled by other editors and has undergone rigorous peer review process. Author Shi-xuan WANG was not involved in the journal’s review of, or decisions related to, this manuscript.

This work was supported by the National Key Research & Development Program of China (No. 2021YFC2701402).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yn., Li, Yy., Wang, Sx. et al. Efficacy of Bispecific Antibody Targeting EpCAM and CD3 for Immunotherapy in Ovarian Cancer Ascites: An Experimental Study. CURR MED SCI 43, 539–550 (2023). https://doi.org/10.1007/s11596-023-2753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2753-2

Key words

Navigation