Skip to main content
Log in

Recent Advances of D-α-tocopherol Polyethylene Glycol 1000 Succinate Based Stimuli-responsive Nanomedicine for Cancer Treatment

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA. It’s widely applied as a multifunctional drug carrier for nanomedicine. The advantages of TPGS include P-glycoprotein (P-gp) inhibition, penetration promotion, apoptosis induction via mitochondrial-associated apoptotic pathways, multidrug resistant (MDR) reversion, metastasis inhibition and so on. TPGS-based drug delivery systems which are responding to external stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect, through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior. In this review, TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed, including pH-responsive, redoxresponsive and multi-responsive systems in various formulations. The achievements, mechanisms and different characteristics of TPGS-based stimuli-responsive drug-delivery systems in tumor therapy were also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tan SW, Zou CM, Zhang W, et al. Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Deliv, 2017, 24(1): 1831–1842

    CAS  PubMed  Google Scholar 

  2. Yang CL, Wu TT, Qi Y, et al. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics, 2018, 8(2): 464

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Duhem N, Danhier F, Preat V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J Control Release, 2014, 182: 33–44

    CAS  PubMed  Google Scholar 

  4. Guo YY, Luo J, Tan SW, et al. The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci, 2013, 49(2): 175–186

    CAS  PubMed  Google Scholar 

  5. Zhang ZP, Tan SW, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 2012, 33(19): 4889–4906

    CAS  PubMed  Google Scholar 

  6. Zheng NN, Wu LH, Tang JL. Advance in Application of d-alpha-tocopherol polyethyleneglycol succinate in the field of pharmaceutics. Zhongguo Yaoxue Zazhi (Chinese), 2014, 49(16): 1373–1376

    CAS  Google Scholar 

  7. Dintaman JM, Silverman JA. Inhibition of P-glyco-protein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res, 1999, 16(10): 1550–1556

    CAS  PubMed  Google Scholar 

  8. Su RN, Liu TF, Zhu XM, et al. Application of TPGS-based nano-drug delivery system in reversing P-gp mediated multidrug resistance. Yaoxue Xuebao (Chinese), 2018, 53(11): 1797–1807

    Google Scholar 

  9. Liu TF, Liu XY, Xiong H, et al. Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma. Polym Chem, 2018, 9(14): 1827–1839

    CAS  Google Scholar 

  10. Collnot EM, Baldes C, Wempe MF, et al. Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharm, 2007, 4(3): 465–474

    CAS  PubMed  Google Scholar 

  11. Collnot EM, Baldes C, Schaefer UF, et al. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm, 2010, 7(3): 642–651

    CAS  PubMed  Google Scholar 

  12. Hao TN, Chen DW, Liu KX, et al. Micelles of d-α-tocopheryl polyethylene glycol 2000 succinate (TPGS 2K) for doxorubicin delivery with reversal of multidrug resistance. ACS Appl Mater Interfaces, 2015, 7(32): 18064–18075

    CAS  PubMed  Google Scholar 

  13. Yu PC, Yu HJ, Guo CY, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater, 2015, 14: 115–124

    CAS  PubMed  Google Scholar 

  14. Tuguntaev RG, Chen SZ, Eltahan AS, et al. P-gp inhibition and mitochondrial impairment by dual-functional nanostructure based on vitamin E derivatives to overcome multidrug resistance. ACS Appl Mater Interfaces, 2017, 9(20): 16900–16912

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang DF, Rong WT, Lu Y, et al. TPGS2k/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocar-cinoma cells. ACS Appl Mater Interfaces, 2015, 7(7): 3888–3901

    CAS  PubMed  Google Scholar 

  16. Wang AT, Liang DS, Liu YJ, et al. Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials, 2015, 53: 160–172

    CAS  PubMed  Google Scholar 

  17. Cabral H, Miyata K, Osada K, et al. Block copolymer micelles in nanomedicine applications. Chem Rev, 2018, 118(14): 6844–6892

    CAS  PubMed  Google Scholar 

  18. Fenton OS, Olafson KN, Pillai PS, et al. Advances in biomaterials for drug delivery. Adv Mater, 2018, 30(29): 1705328

    Google Scholar 

  19. Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm, 2017, 113: 211–228

    CAS  PubMed  Google Scholar 

  20. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater, 2019,1–26

    Google Scholar 

  21. Lu Y, Aimetti AA, Langer R, et al. Bioresponsive materials. Nat Rev Mater, 2016, 2(1): 1–17

    Google Scholar 

  22. Feng AC, Yuan JY. Smart nanocontainers: Progress on novel stimuli-responsive polymer vesicles. Macromol Rapid Commun, 2014, 35(8): 767–779

    CAS  PubMed  Google Scholar 

  23. Zhang WM, Zhang J, Qiao Z, et al. Functionally oriented tumor microenvironment responsive polymeric nanoassembly: Engineering and applications. Chin J Polym Sci, 2018, 36(3): 273–287

    Google Scholar 

  24. Lu CL, Urban MW. Stimuli-responsive polymer nano-science: Shape anisotropy, responsiveness, applications. Prog Polym Sci, 2018, 78: 24–46

    CAS  Google Scholar 

  25. Zhang XY, Han L, Liu MY, et al. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater Chem Front, 2017, 1(5): 807–822

    CAS  Google Scholar 

  26. Stubbs M, McSheehy PMJ, Griffiths JR, et al. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today, 2000, 6(1): 15–19

    CAS  PubMed  Google Scholar 

  27. Engin K, Leeper DB, Cater JR, et al. Extracellular pH distribution in human tumours. Int J Hyperthermia, 1995, 11(2): 211–216

    CAS  PubMed  Google Scholar 

  28. Van SR, Bhujwalla ZM, Raghunand N, et al. In vivo imaging of extracellular pH using 1H MRSI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 1999, 41(4): 743–750

    Google Scholar 

  29. Murphy RF, Powers S, Cantor CR. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol, 1984, 98(5): 1757–1762

    CAS  PubMed  Google Scholar 

  30. Schmid S, Fuchs R, Kielian M, et al. Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J Cell Biol, 1989, 108(4): 1291–1300

    CAS  PubMed  Google Scholar 

  31. Zhou MX, Zhang XC, Xie J, et al. pH-sensitive poly (β-amino ester) s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials, 2018, 8(11): 952

    PubMed Central  Google Scholar 

  32. Hung CC, Huang WC, Lin YW, et al. Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photo-thermal/chemo combinatorial therapy: erratum. Thera-nostics, 2017, 7(3): 559

    Google Scholar 

  33. Wang Q, Zou CM, Wang LY, et al. Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater, 2019, 94: 469–481

    CAS  PubMed  Google Scholar 

  34. Helmlinger G, Sckell A, Dellian M, et al. Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res, 2002, 8(4): 1284–1291

    CAS  PubMed  Google Scholar 

  35. Mi Y, Zhao J, Feng SS. Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm, 2012, 438(1-2): 98–106

    CAS  PubMed  Google Scholar 

  36. Khare V, Sakarchi WA, Gupta Prem N, et al. Correction: Synthesis and characterization of TPGS–gemcitabine prodrug micelles for pancreatic cancer therapy. RSC Advances, 2017, 7(21): 12598–12598

    CAS  Google Scholar 

  37. Gao YH, Ping QN, Zong L. Preparation and antitumor activity of mitoxantrone conjugated D-α-tocopherylpolyethylene glycol 1000 succinate prodrug micelle. Zhongguo Yaoke Daxue Xuebao (Chinese), 2016, 47(03): 311–316

    Google Scholar 

  38. Bao YL, Yin MX, Hu XM, et al. A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release, 2016, 235: 182–194

    CAS  PubMed  Google Scholar 

  39. Hou WX, Zhao X, Qian XQ, et al. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo–photodynamic combi-nation therapy. Nanoscale, 2016, 8(1): 104–116

    CAS  PubMed  Google Scholar 

  40. Dong K, Lei QY, Qi HF, et al. Amplification of oxidative stress in MCF-7 cells by a novel pH-responsive amphiphilic micellar system enhances anticancer therapy. Mol Pharm, 2019, 16(2): 689–700

    CAS  PubMed  Google Scholar 

  41. Lynn DM, Langer R. Degradable poly (β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc, 2000, 122(44): 10761–10768

    CAS  Google Scholar 

  42. Ko JY, Park KS, Kim YS, et al. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (β-amino ester) block copolymer micelles for cancer therapy. J Control Release, 2007, 123(2): 109–115

    CAS  PubMed  Google Scholar 

  43. Min KH, Kim JH, Bae SM, et al. Tumoral acidic pH-responsive MPEG-poly (β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release, 2010, 144(2): 259–266

    CAS  PubMed  Google Scholar 

  44. Chen YC, Bathula SR, Li J, et al. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J Biol Chem, 2010, 285(29): 22639–22650

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao S, Tan SW, Guo YY, et al. pH-sensitive docetaxel-loaded d-α-tocopheryl polyethylene glycol succinate–poly (β-amino ester) copolymer nanoparticles for over-coming multidrug resistance. Biomacromolecules, 2013, 14(8): 2636–2646

    CAS  PubMed  Google Scholar 

  46. Zhang JM, Li JJ, Shi Z, et al. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater, 2017, 58: 349–364

    CAS  PubMed  Google Scholar 

  47. Li Z, Qiu LP, Chen Q, et al. pH-sensitive nanoparticles of poly (L-histidine)-poly (lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater, 2015, 11: 137–150

    CAS  PubMed  Google Scholar 

  48. Hu M, Chen JY, Li ZY, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev, 2006, 35(11): 1084–1094

    CAS  PubMed  Google Scholar 

  49. Xing RR, Liu K, Jiao TF, et al. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater, 2016, 28(19): 3669–3676

    CAS  PubMed  Google Scholar 

  50. Kankala RK, Liu CG, Chen AZ, et al. Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors. ACS Biomater Sci Eng, 2017, 3(10): 2431–2442

    CAS  Google Scholar 

  51. Cheng W, Liang CY, Xu L, et al. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small, 2017,13(29)

    Google Scholar 

  52. Guissi NEI, Li HP, Xu YR, et al. Mitoxantrone-and folate-TPGS2K conjugate hybrid micellar aggregates to circumvent toxicity and enhance efficiency for breast cancer therapy. Mol Pharm, 2017, 14(4): 1082–1094

    CAS  PubMed  Google Scholar 

  53. Zhang JL, Zhao XF, Chen Q, et al. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomater, 2017, 50: 381–395

    CAS  PubMed  Google Scholar 

  54. Kuppusamy P, Li HQ, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res, 2002, 62(1): 307–312

    CAS  PubMed  Google Scholar 

  55. Deng B, Ma P, Xie Y. Reduction-sensitive polymeric nanocarriers in cancer therapy: a comprehensive review. Nanoscale, 2015, 7(30): 12773–12795

    CAS  PubMed  Google Scholar 

  56. Rastew E, Vicente JB, Singh U. Oxidative stress resistance genes contribute to the pathogenic potential of the anaerobic protozoan parasite, Entamoeba histolytica. Int J Parasit, 2012, 42(11): 1007–1015

    CAS  Google Scholar 

  57. Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol, 2003, 36(1): 95–109

    CAS  PubMed  Google Scholar 

  58. Vaccari L, Canton D, Zaffaroni N, et al. Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron Eng, 2006,83(4-9):1598–1601

    CAS  Google Scholar 

  59. Wei H, Zhuo RX, Zhang XZ. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci, 2013, 38(3-4): 503–535

    CAS  Google Scholar 

  60. Lee MH, Yang ZG, Lim CW, et al. Disulfide-cleavage-triggered chemosensors and their biological applications. Chem Rev, 2013, 113(7): 5071–5109

    CAS  PubMed  Google Scholar 

  61. Brülisauer L, Gauthier MA, Leroux JC. Disulfide-containing parenteral delivery systems and their redox-biological fate. J Control Release, 2014, 195: 147–154

    PubMed  Google Scholar 

  62. Bao YL, Guo YY, Zhuang XT, et al. D-α-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Mol Pharm, 2014, 11(9): 3196–3209

    CAS  PubMed  Google Scholar 

  63. Qiao HZ, Zhu ZZ, Fang D, et al. Redox-triggered mitoxantrone prodrug micelles for overcoming multidrug-resistant breast cancer. J Drug Target, 2018, 26(1): 75–85

    CAS  PubMed  Google Scholar 

  64. Banala VT, Urandur S, Sharma S, et al. Targeted co-delivery of the aldose reductase inhibitor epalrestat and chemotherapeutic doxorubicin via a redox-sensitive prodrug approach promotes synergistic tumor suppression. Biomater Sci, 2019, 7(7): 2889–2906

    CAS  PubMed  Google Scholar 

  65. Dong K, Yan Y, Wang PC, et al. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance. Int J Nanomed, 2016, 11: 5109

    CAS  Google Scholar 

  66. Guo YY, Niu BN, Song QL, et al. RGD-decorated redox-responsive d-α-tocopherol polyethylene glycol succinate–poly (lactide) nanoparticles for targeted drug delivery. J Mat Chem B, 2016, 4(13): 2338–2350

    CAS  Google Scholar 

  67. Wang L, Xie X, Liu D, et al. iRGD-mediated reduction-responsive DSPE–PEG/LA–PLGA–TPGS mixed micelles used in the targeted delivery and triggered release of docetaxel in cancer. RSC Adv, 2016, 6(34): 28331–28342

    CAS  Google Scholar 

  68. Song QL, Tan SW, Zhuang XT, et al. Nitric oxide releasing D-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol Pharm, 2014, 11(11): 4118–4129

    CAS  PubMed  Google Scholar 

  69. Yin MX, Tan SW, Bao YL, et al. Enhanced tumor therapy via drug co-delivery and in situ vascular-promoting strategy. J Control Release, 2017, 258: 108–120

    CAS  PubMed  Google Scholar 

  70. Qi Y, Qin XY, Yang CL, et al. Micelle system based on molecular economy principle for overcoming multidrug resistance and inhibiting metastasis. Mol Pharm, 2018, 15(3): 1005–1016

    CAS  PubMed  Google Scholar 

  71. Xu CF, Sun Y, Qi Y, et al. Selective self-induced stimulus amplification prodrug platform for inhibiting multidrug resistance and lung metastasis. J Control Release, 2018, 284: 224–239

    CAS  PubMed  Google Scholar 

  72. Su ZG, Chen ML, Xiao YY, et al. ROS-triggered and regenerating anticancer nanosystem: An effective strategy to subdue tumor’s multidrug resistance. J Control Release, 2014, 196: 370–383

    CAS  PubMed  Google Scholar 

  73. Zhang XY, Wang XF, Zhong WT, et al. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation. Int J Nanomed, 2016, 11: 1643

    CAS  Google Scholar 

  74. Zhao H, Jing MF, Li ZH, et al. Potentiating chemotherapy efficacy in neuroblastoma cells via disialoganglioside2 targeting mixed micelles. J Nanosci Nanotechnol, 2016, 16(12): 12307–12315

    CAS  Google Scholar 

  75. Gao L, Wang XQ, Ma JL, et al. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines. Colloid Surf B: Biointerfaces, 2016, 140: 307–316

    CAS  PubMed  Google Scholar 

  76. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci, 2007, 32(8-9): 962–990

    CAS  Google Scholar 

  77. Zhang QS, Zha LS, Ma JH, et al. A novel route to prepare pH-and temperature-sensitive nanogels via a semibatch process. J Colloid Interface Sci, 2009, 330(2): 330–336

    CAS  PubMed  Google Scholar 

  78. Guo M, Yan Y, Zhang HK, et al. Magnetic and pH-responsive nanocarriers with multilayer core–shell architecture for anticancer drug delivery. J Mater Chem, 2008, 18(42): 5104–5112

    CAS  Google Scholar 

  79. Feng HK, Zhao Y, Pelletier M, et al. Synthesis of photo-and pH-responsive composite nanoparticles using a two-step controlled radical polymerization method. Polymer, 2009, 50(15): 3470–3477

    CAS  Google Scholar 

  80. Isojima T, Lattuada M, Vander SJB, et al. Reversible clustering of pH-and temperature-responsive Janus magnetic nanoparticles. Acs Nano, 2008, 2(9): 1799–1806

    CAS  PubMed  Google Scholar 

  81. Bao YL, Kong M, Gao XQ, et al. pH-, redox dual-sensitive poly (β-amino ester)-g-TPGS copolymer nanoparticles for drug delivery and inhibition of multidrug resistance in cancer. React Funct Polym, 2017, 120: 131–138

    CAS  Google Scholar 

  82. Yin MX, Bao YL, Gao XQ, et al. Redox/pH dual-sensitive hybrid micelles for targeting delivery and overcoming multidrug resistance of cancer. J Mat Chem B, 2017, 5(16): 2964–2978

    CAS  Google Scholar 

  83. Han N, Zhao QF, Wan L, et al. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS Appl Mater Interfaces, 2015, 7(5): 3342–3351

    CAS  PubMed  Google Scholar 

  84. Sha LP, Zhao QF, Wang D, et al. “Gate” engineered mesoporous silica nanoparticles for a double inhibition of drug efflux and particle exocytosis to enhance antitumor activity. J Colloid Interface Sci, 2019, 535: 380–391

    CAS  PubMed  Google Scholar 

  85. Cheng R, Meng FH, Deng C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for progra-mmed site-specific drug delivery. Biomaterials, 2013, 34(14): 3647–3657

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-ling Bao or Song-wei Tan.

Ethics declarations

The authors declare that they have no competing interest.

Additional information

This study was supported by the National Natural Science Foundation of China (No. 81871473) and the Natural Science Foundation of Zhejiang Chinese Medical University (No. 2018ZZ11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Wang, Ly., Wang, B. et al. Recent Advances of D-α-tocopherol Polyethylene Glycol 1000 Succinate Based Stimuli-responsive Nanomedicine for Cancer Treatment. CURR MED SCI 40, 218–231 (2020). https://doi.org/10.1007/s11596-020-2185-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2185-1

Key words

Navigation