Skip to main content
Log in

Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Hydrogen peroxide (H2O2) and free radicals cause oxidative stress, which induces cellular injuries, metabolic dysfunction, and even cell death in various clinical abnormalities. Fullerene (C60) is critical for scavenging oxygen free radicals originated from cell metabolism, and reduced glutathione (GSH) is another important endogenous antioxidant. In this study, a novel water-soluble reduced glutathione fullerene derivative (C60-GSH) was successfully synthesized, and its beneficial roles in protecting against H2O2-induced oxidative stress and apoptosis in cultured HEK 293T cells were investigated. Fourier Transform infrared spectroscopy and 1H nuclear magnetic resonance were used to confirm the chemical structure of C60-GSH. Our results demonstrated that C60-GSH prevented the reactive oxygen species (ROS)-mediated cell damage. Additionally, C60-GSH pretreatment significantly attenuated H2O2-induced superoxide dismutase (SOD) consumption and malondialdehyde (MDA) elevation. Furthermore, C60-GSH inhibited intracellular calcium mobilization, and subsequent cell apoptosis via bcl-2/bax-caspase-3 signaling pathway induced by H2O2 stimulation in HEK 293T cells. Importantly, these protective effects of C60-GSH were superior to those of GSH. In conclusion, these results suggested that C60-GSH has potential to protect against H2O2-induced cell apoptosis by scavenging free radicals and maintaining intracellular calcium homeostasis without evident toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeong JJ, Ha YM, Jin YC, et al. Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro. Food Chem Toxicol, 2009, 47(7): 1569–1576

    Article  CAS  PubMed  Google Scholar 

  2. Schwarz KB. Oxidative stress during viral infection: a review. Free Radic Biol Med, 1996, 21(5): 641–649

    Article  CAS  PubMed  Google Scholar 

  3. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113): 787–795

    Article  CAS  PubMed  Google Scholar 

  4. Di Carlo M, Giacomazza D, Picone P, et al. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res, 2012, 46(11): 1327–1338

    Article  PubMed  Google Scholar 

  5. Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med, 2010, 49(11): 1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo P, Chen T, Zhao Y, et al. Protective effect of Homer 1a against hydrogen peroxide-induced oxidative stress in PC12 cells. Free Radic Res, 2012, 46(6): 766–776

    Article  CAS  PubMed  Google Scholar 

  7. Jiang B, Liu JH, Bao YM, et al. Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Toxicon, 2004, 43(1): 53–59

    Article  CAS  PubMed  Google Scholar 

  8. Prylutskyy YI, Petrenko VI, Ivankov OI, et al. On the origin of C(6)(0) fullerene solubility in aqueous solution. Langmuir, 2014, 30(14): 3967–3970

    Article  CAS  PubMed  Google Scholar 

  9. Zhu E, Liu R, Lv M, et al. Preparation and characterization of a new hydrophilic C60 derivative (OH)16C60CHCOOH. J Nanosci Nanotechnol, 2010, 10(2): 927–932

    Article  CAS  PubMed  Google Scholar 

  10. Ritter U, Prylutskyy YI, Evstigneev MP, et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fuller Nanotub Carbon Nanostruct, 2014, 23(6): 530–534

    Article  Google Scholar 

  11. Hu Z, Guan W, Wang W, et al. Protective effect of a novel cystine C (60) derivative on hydrogen peroxide-induced apoptosis in rat pheochromocytoma PC12 cells. Chem Biol Interact, 2007, 167(2): 135–144

    Article  CAS  PubMed  Google Scholar 

  12. Hu Z, Guan W, Wang W, et al. Synthesis of beta-alanine C60 derivative and its protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Cell Biol Int, 2007, 31(8): 798–804

    Article  CAS  PubMed  Google Scholar 

  13. Hu Z, Guan W, Wang W, et al. Folacin C60 derivative exerts a protective activity against oxidative stress-induced apoptosis in rat pheochromocytoma cells. Bioorg Med Chem Lett, 2010, 20(14): 4159–4162

    Article  CAS  PubMed  Google Scholar 

  14. Hu Z, Zhang C, Huang Y, et al. Photodynamic anticancer activities of water-soluble C(60) derivatives and their biological consequences in a HeLa cell line. Chem Biol Interact, 2012, 195(1): 86–94

    Article  CAS  PubMed  Google Scholar 

  15. Davydenko MO, Radchenko EO, Yashchuk VM, et al. Sensibilization of fullerene C60 immobilized at silica nanoparticles for cancer photodynamic therapy. J Mol Liquid, 2006, 127(1-3): 145–147

    Article  CAS  Google Scholar 

  16. Prylutska SV, Burlaka AP, Prylutskyy YI, et al. Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp Oncol, 2011, 33(3): 162–164

    CAS  PubMed  Google Scholar 

  17. Nemeth I, Boda D. The ratio of oxidized/reduced glutathione as an index of oxidative stress in various experimental models of shock syndrome. Biomed Biochim Acta, 1989, 48(2-3): S53–57

    CAS  PubMed  Google Scholar 

  18. Hu Z, Liu S, Wei Y, et al. Synthesis of glutathione C60 derivative and its protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Neurosci Lett, 2007, 429(2-3): 81–86

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Dong X, Liu H, et al. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis, 2013, 19: 1656–1666

    CAS  PubMed  PubMed Central  Google Scholar 

  20. He B, Tao HY, Liu SQ. Neuroprotective effects of carboxymethylated chitosan on hydrogen peroxide induced apoptosis in Schwann cells. Eur J Pharmacol, 2014, 740C: 127–134

    Article  Google Scholar 

  21. Wang J, Sun P, Bao Y, et al. Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol In Vitro, 2012, 26(1): 32–41

    Article  PubMed  Google Scholar 

  22. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol, 2014, 24(10): R453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramalingam M, Kim SJ. Insulin on hydrogen peroxide-induced oxidative stress involves ROS/Ca2+ and Akt/Bcl-2 signaling pathways. Free Radic Res, 2014, 48(3): 347–356

    Article  CAS  PubMed  Google Scholar 

  24. Scharff P, Ritter U, Matyshevska OP, et al. Therapeutic reactive oxygen generation. Tumori, 2008, 94(2): 278–283

    CAS  PubMed  Google Scholar 

  25. Prylutska SV, Grynyuk II, Matyshevska OP, et al. Anti-oxidant properties of C60 fullerenes in vitro. Fuller, Nanotub Carbon Nanostruct, 2008, 16(5-6): 698–705

    Article  CAS  Google Scholar 

  26. Zamzami N, Hirsch T, Dallaporta B, et al. Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr, 1997, 29(2): 185–193

    Article  CAS  PubMed  Google Scholar 

  27. Kwon SH, Kim JA, Hong SI, et al. Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem Int, 2011, 58(4): 533–541

    Article  CAS  PubMed  Google Scholar 

  28. Kumar A, Kumar V, Singh SK, et al. Imbalanced oxidant and antioxidant ratio in myotonic dystrophy type 1. Free Radic Res, 2014, 48(4): 503–510

    Article  CAS  PubMed  Google Scholar 

  29. Gawel S, Wardas M, Niedworok E, et al. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek, 2004, 57(9-10): 453–455

    PubMed  Google Scholar 

  30. Luo T, Zhang H, Zhang WW, et al. Neuroprotective effect of Jatrorrhizine on hydrogen peroxide-induced cell injury and its potential mechanisms in PC12 cells. Neurosci Lett, 2011, 498(3): 227–231

    Article  CAS  PubMed  Google Scholar 

  31. Prylutska S, Bilyy R, Overchuk M, et al. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J Biomed Nanotechnol, 2012, 8(3): 522–527

    Article  CAS  PubMed  Google Scholar 

  32. Prylutska SV, Matyshevska OP, Grynyuk II, et al. Biological effects of C60 fullerenes in vitro and in a model system. Mol Crystal Liquid Crystal, 2007, 468(1): 265–274

    Google Scholar 

  33. Sun HY, Wang NP, Kerendi F, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol, 2005, 288(4): H1900–1908

    Article  CAS  PubMed  Google Scholar 

  34. Rothstein EC, Byron KL, Reed RE, et al. H(2)O(2)-induced Ca(2+) overload in NRVM involves ERK1/2 MAP kinases: role for an NHE-1-dependent pathway. Am J Physiol Heart Circ Physiol, 2002, 283(2): H598–605

    Article  CAS  PubMed  Google Scholar 

  35. Xu KY, Zweier JL, Becker LC. Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2+)-ATPase function by direct attack on the ATP binding site. Circ Res, 1997, 80(1): 76–81

    Article  CAS  PubMed  Google Scholar 

  36. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol, 2003, 4(7): 552–565

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W, Tong Q, Conrad K, et al. Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am J Physiol Cell Physiol, 2007, 292(5): C1746–1758

    Article  CAS  PubMed  Google Scholar 

  38. Jin H, Chen WQ, Tang XW, et al. Polyhydroxylated C(60), fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res, 2000, 62(4): 600–607

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hong Liu  (刘胜洪).

Additional information

This project was supported by the Nature Science Foundation Committee Projects of China (No. 30470425).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhou, C., He, J. et al. Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 356–363 (2016). https://doi.org/10.1007/s11596-016-1591-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1591-x

Key words

Navigation