Skip to main content
Log in

PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1–1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1–1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001–1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca2+-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the “pre-synaptic inhibition” evoked by GABA, which may explain its role in pain and neurogenic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eccles JC. Presynaptic inhibition in the spinal cord. Progress Brain Res, 1964,12:65–91

    Article  CAS  Google Scholar 

  2. Chen QX, Stelzer A, Kay AR, et al. GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurons. J Physiol, 1990,420:207–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. McMahon SB, Koltzenburg M. Novel classes of nociceptors: beyond Sherrington. Trends Neurosci, 1990,13(6): 199–201

    Article  CAS  PubMed  Google Scholar 

  4. Si JQ, Li ZW, Hu HZ, et al. Inhibitory effect of baclofen on GABA-induced depolarization and GABA-activated current in primary sensory neurons. Neuroscience, 1997,81(3):821–827

    Article  CAS  PubMed  Google Scholar 

  5. Si JQ, Zhang ZQ, Li CX, et al. Modulatory effect of substance P on GABA-activated currents from rat dorsal root ganglion. Acta Pharmacol Sin, 2004,25(5):623–629

    CAS  PubMed  Google Scholar 

  6. Yamada K, Akasu T. Substance P suppresses GABAA receptor function via protein kinase C in primary sensory neurons of bullfrogs. J Physiol, 1996,496(Pt 2):439–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gyenes M, Wang Q, Gibbs TT, et al. Phosphorylation factors control neurotransmitter and neuromodulator actions at the gamma-aminobutyric acid type A receptor. Molecul Pharmacol, 1994,46(3):542–549

    CAS  Google Scholar 

  8. Velazquez KT, Mohammad H, Sweitzer SM. Protein kinase C in pain: involvement of multiple isoforms. Pharmacol Res, 2007,55(6):578–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hashimoto T, Ase K, Sawamura S, et al. Postnatal development of a brain-specific subspecies of protein kinase C in rat. J Neurosci, 1988,8(5):1678–1683

    CAS  PubMed  Google Scholar 

  10. Huang FL, Young WS, 3rd, Yoshida Y, et al. Developmental expression of protein kinase C isozymes in rat cerebellum. Brain Res Dev Brain Res, 1990,52(1–2):121–130

    Article  CAS  PubMed  Google Scholar 

  11. Mochly-Rosen D, Basbaum AI, Koshland DE, et al. Distinct cellular and regional localization of immunoreactive protein kinase C in rat brain. Proc Natl Acad Sci USA, 1987,84(13):4660–4664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Saito Y, Teshima R, Takagi K, et al. Activation of protein kinase C alpha enhances human growth hormone-binding protein release. Mol Cell Endocrinol, 1998,146(1–2):197–205

    Article  CAS  PubMed  Google Scholar 

  13. Wetsel WC, Khan WA, Merchenthaler I, et al. Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol, 1992,117(1):121–133

    Article  CAS  PubMed  Google Scholar 

  14. Aley KO, Messing RO, Mochly-Rosen D, et al. Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J Neurosci, 2000,20(12):4680–4685

    CAS  PubMed  Google Scholar 

  15. Igwe OJ, Chronwall BM. Hyperalgesia induced by peripheral inflammation is mediated by protein kinase C betaII isozyme in the rat spinal cord. Neuroscience, 2001,104(3):875–890

    Article  CAS  PubMed  Google Scholar 

  16. Ma KT, Si JQ, Zhang ZQ, et al. Modulatory effect of CCK-8S on GABA-induced depolarization from rat dorsal root ganglion. Brain Res, 2006,1121(1):66–75

    Article  CAS  PubMed  Google Scholar 

  17. Baker MD. Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones. J Physiol, 2005,567(Pt 3):851–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yang L, Liu G, Zakharov SI, et al. Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. J Biol Chem, 2005,280(1):207–214

    Article  CAS  PubMed  Google Scholar 

  19. Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev, 1993,73(2):229–308

    CAS  PubMed  Google Scholar 

  20. Akasu T, Ishimatsu M, Yamada K. Tachykinins cause inward current through NK1 receptors in bullfrog sensory neurons. Brain Res, 1996,713(1–2):160–167

    Article  CAS  PubMed  Google Scholar 

  21. Dray A, Pinnock RD. Effects of substance P on adult rat sensory ganglion neurones in vitro. Neurosci Lett, 1982,33(1):61–66

    Article  CAS  PubMed  Google Scholar 

  22. Hu HZ, Li ZW, Si JQ. Evidence for the existence of substance P autoreceptor in the membrane of rat dorsal root ganglion neurons. Neuroscience, 1997,77(2):535–541

    Article  CAS  PubMed  Google Scholar 

  23. Ishimatsu M. Substance P produces an inward current by suppressing voltage-dependent and -independent K+ currents in bullfrog primary afferent neurons. Neurosci Res, 1994,19(1):9–20

    Article  CAS  PubMed  Google Scholar 

  24. Si JQ, Li ZW. Effect of substance P on the somatic membrane of rat DRG neurons. Sheng Li Xue Bao (Chinese), 1996,48(1):8–14

    CAS  Google Scholar 

  25. Desarmenien M, Feltz P, Occhipinti G, et al. Coexistence of GABAA and GABAB receptors on A delta and C primary afferents. Br J Pharmacol, 1984,81(2):327–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhou Y, Zhou ZS, Zhao ZQ. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats. Neuropharmacology, 2001,41(5):601–608

    Article  CAS  PubMed  Google Scholar 

  27. Frayer SM, Barber LA, Vasko MR. Activation of protein kinase C enhances peptide release from rat spinal cord slices. Neurosci Lett, 1999,265(1):17–20

    Article  CAS  PubMed  Google Scholar 

  28. Barber LA, Vasko MR. Activation of protein kinase C augments peptide release from rat sensory neurons. J Neurochem, 1996,67(1):72–80

    Article  CAS  PubMed  Google Scholar 

  29. Malcangio M, Fernandes K, Tomlinson DR. NMDA receptor activation modulates evoked release of substance P from rat spinal cord. Br J Pharmacol, 1998,125(8): 1625–1626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Qin X, Wan Y, Wang X. CCL2 and CXCL1 trigger calcitonin gene-related peptide release by exciting primary nociceptive neurons. J Neurosci Res, 2005,82(1):51–62

    Article  CAS  PubMed  Google Scholar 

  31. Cheng HJ, Ma KT, Li L, et al. Differential expression of alpha-adrenoceptor subtypes in rat dorsal root ganglion after chronic constriction injury. J Huazhong Univ Sci Technolog Med Sci, 2014,34(3):322–329

    Article  CAS  PubMed  Google Scholar 

  32. McCarthy PW, Lawson SN. Cell type and conduction velocity of rat primary sensory neurons with substance P-like immunoreactivity. Neuroscience, 1989,28(3):745–753

    Article  CAS  PubMed  Google Scholar 

  33. Hershey AD, Krause JE. Molecular characterization of a functional cDNA encoding the rat substance P receptor. Science, 1990,247(4945):958–962

    Article  CAS  PubMed  Google Scholar 

  34. Huang RQ, Dillon GH. Maintenance of recombinant type A gamma-aminobutyric acid receptor function: role of protein tyrosine phosphorylation and calcineurin. J Pharmacol Exp Ther, 1998,286(1):243–255

    CAS  PubMed  Google Scholar 

  35. Masu Y, Nakayama K, Tamaki H, et al. cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature, 1987,329(6142): 836–838

    Article  CAS  PubMed  Google Scholar 

  36. Nicoll RA, Schenker C, Leeman SE. Substance P as a transmitter candidate. Annu Rev Neurosci, 1980,3:227–268

    Article  CAS  PubMed  Google Scholar 

  37. Lecci A, Maggi CA. Peripheral tachykinin receptors as potential therapeutic targets in visceral diseases. Expert Opin Ther Targets, 2003,7(3):343–362

    Article  CAS  PubMed  Google Scholar 

  38. Maggi CA. Tachykinins as peripheral modulators of primary afferent nerves and visceral sensitivity. Pharmacol Res, 1997,36(2):153–169

    Article  CAS  PubMed  Google Scholar 

  39. Quartara L, Altamura M, Evangelista S, et al. Tachykinin receptor antagonists in clinical trials. Expert Opin Investig Drugs, 2009,18(12):1843–1864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-qiang Si  (司军强).

Additional information

The authors contributed equally to this work.

This project was supported by grants from the National Natural Science Foundation of China (No. 30160026) and the Youth Science and Technology Innovation Special Foundation of Xinjiang Production and Construction Corps, China (No. 2010JC33).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhao, L., Wang, Y. et al. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 35, 1–9 (2015). https://doi.org/10.1007/s11596-015-1380-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-015-1380-y

Key words

Navigation