Skip to main content
Log in

A HPLC-Q-TOF-MS-based urinary metabolomic approach to identification of potential biomarkers of metabolic syndrome

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Metabolic syndrome (MetS) is a serious threat to public health worldwide with an increased risk of developing type 2 diabetes, cardiovascular diseases and all-cause morbidity and mortality. In this study, a urinary metabolomic approach was performed on high performance liquid chromatography quadrupole time-of-flight mass spectrometry to discriminate 36 male MetS patients and 36 sex and age matched healthy controls. Pattern recognition analyses (principal component analysis and orthogonal projections to latent structures discriminate analysis) commonly demonstrated the difference between MetS patients and no-MetS subjects. This study found 8 metabolites that showed significant changes in patients with MetS, including branch-chain and aromatic amino acids (leucine, tyrosine, phenylalanine and tryptophan), short-chain acylcanitine (tiglylcarnitine), tricarboxylic acid (TCA) cycle intermediate (cis-aconitic acid) and glucuronidated products (cortolone-3-glucuronide and tetrahydroaldosterone-3-glucuronide). The candidate biomarkers revealed in this study could be useful in providing clues for further research focusing on the in-depth investigation of the cause of and cure for MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet, 2005, 366(9491):1059–1062

    Article  PubMed  Google Scholar 

  2. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009,120(16):1640–1645

    Article  PubMed  CAS  Google Scholar 

  3. Gu D, Reynolds K, Wu X, et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet, 2005,365(9468):1398–1405

    Article  PubMed  Google Scholar 

  4. Gami AS, Witt BJ, Howard DE, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol, 2007,49(4):403–414

    Article  PubMed  CAS  Google Scholar 

  5. Kahn R, Buse J, Ferrannini E, et al. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2005,28(9):2289–2304

    Article  PubMed  Google Scholar 

  6. Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. Lancet, 2010,375(9710):181–183

    Article  PubMed  Google Scholar 

  7. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest, 2006,116(7): 1784–1792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Esteghamati A, Zandieh A, Zandieh B, et al. Leptin cut-off values for determination of metabolic syndrome: third national surveillance of risk factors of non-communicable diseases in Iran (SuRFNCD-2007). Endocrine, 2011,40(1):117–123

    Article  PubMed  CAS  Google Scholar 

  9. Timpson NJ, Lawlor DA, Harbord RM, et al. C-reactive protein and its role in metabolic syndrome: mendelian randomisation study. Lancet, 2005,366(9501):1954–1959

    Article  PubMed  CAS  Google Scholar 

  10. Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 2003,2(8): 668–676

    Article  PubMed  CAS  Google Scholar 

  11. Raamsdonk LM, Teusink B, Broadhurst D, et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol, 2001,19(1):45–50

    Article  PubMed  CAS  Google Scholar 

  12. An J, Muoio DM, Shiota M, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med, 2004,10(3): 268–274

    Article  PubMed  CAS  Google Scholar 

  13. Ong ES, Zou L, Li S, et al. Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis. Mol Cell Proteomics, 2010 [PMID: 20147338]

    Google Scholar 

  14. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med, 2011,17(4):448–453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Lv H, Hung CS, Chaturvedi KS, et al. Development of an integrated metabolomic profiling approach for infectious diseases research. Analyst, 2011,136(22):4752–4763

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Othman A, Rutti MF, Ernst D, et al. Plasma deoxysphingolipids: a novel class of biomarkers for the metabolic syndrome? Diabetologia, 2012,55(2):421–431

    Article  PubMed  CAS  Google Scholar 

  17. Zhang T, Wu X, Ke C, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J Proteome Res, 2013,12(1):505–512

    Article  PubMed  CAS  Google Scholar 

  18. Dunn WB, Wilson ID, Nicholls AW, et al. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis, 2012,4(18):2249–2264

    Article  PubMed  CAS  Google Scholar 

  19. Bijlsma S, Bobeldijk I, Verheij ER, et al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem, 2006,78(2): 567–574

    Article  PubMed  CAS  Google Scholar 

  20. An Z, Chen Y, Zhang R, et al. Integrated ionization approach for RRLC-MS/MS-based metabonomics: finding potential biomarkers for lung cancer. J Proteome Res, 2010,9(8):4071–4081

    Article  PubMed  CAS  Google Scholar 

  21. Zhu Z, Wang H, Shang Q, et al. Time course analysis of candida albicans metabolites during biofilm development. J Proteome Res, 2013,12(6):2375–2385

    Article  PubMed  CAS  Google Scholar 

  22. Zhang F, Jia Z, Gao P, et al. Metabonomics study of atherosclerosis rats by ultra fast liquid chromatography coupled with ion trap-time of flight mass spectrometry. Talanta, 2009,79(3):836–844

    Article  PubMed  CAS  Google Scholar 

  23. Wurtz P, Tiainen M, Makinen VP, et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care, 2012,35(8):1749–1756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Wurtz P, Soininen P, Kangas AJ, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care, 2013,36(3):648–655

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Patti M E, Brambilla E, Luzi L, et al. Bidirectional modulation of insulin action by amino acids. J Clin Invest, 1998,101(7):1519–1529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab, 2009,9(4):311–326

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Soares-da-Silva P, Vieira-Coelho MA, Pinto-do OP, et al. Studies on the nature of the antagonistic actions of dopamine and 5-hydroxytryptamine in renal tissues. Hypertens Res, 1995, 18(Suppl 1):S47–S51

    Article  PubMed  CAS  Google Scholar 

  28. Hirose M, Tomoda F, Koike T, et al. Imbalance of renal production between 5-hydroxytryptamine and dopamine in patients with essential hypertension complicated by microalbuminuria. Am J Hypertens, 2013,26(2):227–233

    Article  PubMed  CAS  Google Scholar 

  29. Adams S H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr, 2011,2(6):445–456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Mihalik SJ, Goodpaster BH, Kelley DE, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring), 2010,18(9):1695–1700

    Article  CAS  Google Scholar 

  31. Schooneman MG, Vaz FM, Houten SM, et al. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes, 2013,62(1):1–8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Sharma S, Sud N, Wiseman DA, et al. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2008, 294(1):L46–56

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Satapati S, Sunny N E, Kucejova B, et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res, 2012, 53(6):1080–1092

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Cusi K. Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis. Clin Liver Dis, 2009,13(4): 545–563

    Article  PubMed  Google Scholar 

  35. Catania VA, Carrillo MC. Intestinal phase II detoxification systems: effect of low-protein diet in weanling rats. Toxicol Lett, 1990,54(2–3):263–270

    Article  PubMed  CAS  Google Scholar 

  36. Xu J, Kulkarni SR, Li L, et al. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis. Drug Metab Dispos, 2012,40(2):259–266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Guan HP, Goldstein JL, Brown MS, et al. Accelerated fatty acid oxidation in muscle averts fasting-induced hepatic steatosis in SJL/J mice. J Biol Chem, 2009,284(36): 24644–24652

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Osabe M, Sugatani J, Fukuyama T, et al. Expression of hepatic UDP-glucuronosyltransferase 1A1 and 1A6 correlated with increased expression of the nuclear constitutive androstane receptor and peroxisome proliferator-activated receptor alpha in male rats fed a high-fat and high-sucrose diet. Drug Metab Dispos, 2008,36(2): 294–302

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-jun Tang  (汤乃军).

Additional information

This project was supported by a grant from the Tianjin Scientific and Technological Support Key Projects (No. 08ZCGYSF01500) and the Tianjin Department of Science & Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Zr., Ning, Y., Yu, H. et al. A HPLC-Q-TOF-MS-based urinary metabolomic approach to identification of potential biomarkers of metabolic syndrome. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 276–283 (2014). https://doi.org/10.1007/s11596-014-1271-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1271-7

Key words

Navigation