Skip to main content
Log in

Dexamethasone reduces IL-17 and Tim-3 expression in BALF of asthmatic mice

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study investigated the expression of interleukin-17 (IL-17) and T cell immunoglobulin mucin and domain-containing molecule-3 (Tim-3) in bronchoalveolar lavage fluid (BALF) of asthmatic mice and the effect of dexamethasone (DEX) on these factors. Thirty-six mice were randomly divided into three groups: normal group, asthmatic group and DEX group. The mouse model of asthma was established by sensitization with ovalbumin in both the asthmatic and DEX groups. The levels of IL-6, IL-10, IL-17 and TGF-β were measured in BALF by enzyme-linked immunesorbent assay (ELISA). The mRNA expression level of Tim-3 was detected by reverse transcription polymerase chain reaction (RT-PCR). The ratio of Tim-3+CD4+ cells to total CD4+ cells in BALF was determined by flow cytometry. Differential inflammatory cells in BALF were detected. The correlations among IL-17, IL-6, IL-10, Tim-3 and inflammatory cells were analyzed. The results showed that the levels of IL-17, IL-6 and Tim-3 were substantially increased and the IL-10 level decreased in BALF in the asthmatic mice, which was significantly reversed by DEX treatment. IL-17 expression was positively correlated with IL-6 and Tim-3 expression and the number of inflammatory cells but negatively with IL-10 expression. These results indicate that the increased expression of IL-17 and Tim-3 in BALF may be implicated in the occurrence and development of asthmatic inflammation; the mechanism by which DEX suppresses asthmatic airway inflammation involves down-regulation of IL-17 and Tim-3 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol, 2010,28: 445–489

    Article  PubMed  CAS  Google Scholar 

  2. Bettelli E, Korn T, Kuchroo VK. Th17: The third member of the effector T cell trilogy. Curr Opin Immunol, 2007,19(6):652–657

    Article  PubMed  CAS  Google Scholar 

  3. Bettelli E, Korn T, Oukka M, et al. Induction and effector functions of T (H) 17 cells. Nature, 2008,453:1051–1057

    Article  PubMed  CAS  Google Scholar 

  4. Oboki K, Ohno T, Saito H, et al. Th17 and allergy. Allerqol Int, 2008,57(2):121–134

    Article  CAS  Google Scholar 

  5. Sun YC, Zhou QT, Yao WZ. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma. Chin Med J, 2005,118(11): 953–956

    PubMed  CAS  Google Scholar 

  6. Wang YH, Liu YJ. The IL-17 cytokine family and their role in allergic inflammation. Current Opinion Immunol, 2008,20(6):697–702

    Article  CAS  Google Scholar 

  7. Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol, 2003,111(6):1293–1298

    Article  PubMed  CAS  Google Scholar 

  8. Hellings PW, Kasran A, Liu Z, et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol, 2003,28(1):42–50

    Article  PubMed  CAS  Google Scholar 

  9. Oda N, Canelos PB, Essayan DM, et al. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen induced allergic response. Am J Respir Crit Care Med, 2005, 171(1):12–18

    Article  PubMed  Google Scholar 

  10. Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity, 2002,17(3):375–387

    Article  PubMed  CAS  Google Scholar 

  11. Wills-Karp M, Belkaid Y, Karp CL. I-Tim-izing the pathways of counter-regulation. Nat Immunol, 2003,4(11): 1050–1052

    Article  PubMed  CAS  Google Scholar 

  12. Kuchroo VK, Umetsu DT, Dekruyff RH, et al. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol, 2003,3(6):454–462

    Article  PubMed  CAS  Google Scholar 

  13. Hastings WD, Anderson DE, Kassam N, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines. Eur J Immunol, 2009,39(9): 2492–2501

    Article  PubMed  CAS  Google Scholar 

  14. Wang F, Wan L, Zhang C, et al. Tim-3-Galectin-9 pathway involves the suppression induced by CD4+CD25+ regulatory T cells. Immunobiology, 2009,21(5):342–349

    Article  Google Scholar 

  15. Chen Y, Langrish CL, Mckenzie B, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest, 2006,116(5):1317–1326

    Article  PubMed  CAS  Google Scholar 

  16. Niwa H, Satoh T, Matsushima Y, et al. Stable form of galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions: a potent therapeutic tool for Th1- and/or Th17-mediated skin inflammation. Clin Immunol, 2009,132(2):184–194

    Article  PubMed  CAS  Google Scholar 

  17. Seki M, Oomizu S, Sakata KM, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol, 2008,127(1):78–88

    Article  PubMed  CAS  Google Scholar 

  18. Stampfli MR, Wiley RE, Neigh GS, et al. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest, 1998,102(9):1704–1714

    Article  PubMed  CAS  Google Scholar 

  19. Yokoyama A, Hamazaki T, Ohshita A, et al. Effect of aerosolized docosahexaenoic acid in a mouse model of atopic asthma. Int Arch Allergy Immunol, 2000,123(4): 327–332

    Article  PubMed  CAS  Google Scholar 

  20. Chae WJ, Lee HK, Han JH, et al. Qualitatively differential regulation of T cell activation and apoptosis by T cell receptor zeta chain ITAMs and their tyrosine residues. Int Immunol, 2004,16(9):1225–1236

    Article  PubMed  CAS  Google Scholar 

  21. Braun CM, Huang SK, Bashian GG, et al. Corticosteroid modulation of human, antigen-specific Th1 and Th2 responses. J Allergy Clin Immunol, 1997,100(3):400–407

    Article  PubMed  CAS  Google Scholar 

  22. Monney L, Sabatos CA, Gaqlia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 2002, 415(6871):536–541

    Article  PubMed  CAS  Google Scholar 

  23. Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol, 2003,4(11):1093–1101

    Article  PubMed  CAS  Google Scholar 

  24. Nakae S, Iwakura Y, Suto H, et al. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol, 2007, 81(5):1258–1268

    Article  PubMed  CAS  Google Scholar 

  25. Maddox L, Schwartz DA. The pathophysiology of asthma. Annu Rev Med, 2002,53:477–498

    Article  PubMed  CAS  Google Scholar 

  26. Walker C, Bode E, Boer L, et al. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am Rev Respir Dis, 1992,146(1):109–115

    Article  PubMed  CAS  Google Scholar 

  27. Robinson DS, Hamid Q, Ying S, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med, 1992,326(5):298–304

    Article  PubMed  CAS  Google Scholar 

  28. McHugh SM, Deighton J, Stewart AG, et al. Bee venom immunotherapy induces a shift in cytokine responses from a TH-2 to a TH-1 dominant pattern: comparison of rush and conventional immunotherapy. Clin Exp Allergy, 1995,25(9):828–838

    Article  PubMed  CAS  Google Scholar 

  29. Rutkowski R, Moniuszko T, Stasiak-Barmuta A, et al. CD80 and CD86 expression on LPS-stimulated monocytes and the effect of CD80 and CD86 blockade on IL-4 and IFN-gamma production in nonatopic bronchial asthma. Arch Immunol Ther Exp, 2003,51(6):421–428

    CAS  Google Scholar 

  30. Pappu BP, Anqkasekwinai P, Dong C. Regulatory mechanisms of helper T cell differentiation: New lessons learned from interleukin 17 family cytokines. Pharmacol Ther, 2008,117(3):374–384

    Article  PubMed  CAS  Google Scholar 

  31. Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-Cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med, 2008(10):1023–1032

    Article  Google Scholar 

  32. Cheung PF, Wong CK, Lam CW. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes mediated allergic inflammation. J Immunol, 2008,180(8):5625–5635

    PubMed  CAS  Google Scholar 

  33. Hu WK, Lu XX, Yang S, et al. Expression of the Th1-specific cell-surface protein Tim-3 increases in a murine model of atopic asthma. J Asthma, 2009,46(9): 872–877

    Article  PubMed  CAS  Google Scholar 

  34. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem pharmacol, 2003,149:1–38

    Article  PubMed  CAS  Google Scholar 

  35. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006,441(7090): 235–238

    Article  PubMed  CAS  Google Scholar 

  36. Manqan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature, 2006,441(7090):231–234

    Article  Google Scholar 

  37. Vignola AM, Chanez P, Chiappara G, et al. Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am J Respir Crit Care Med, 1997,156:591–599

    Article  PubMed  CAS  Google Scholar 

  38. Hoshino M, Nakamura Y, Sim JJ. Expression of growth factors and remodeling of the airway wall in bronchial asthma. Thorax, 1998,53(1):21–27

    Article  PubMed  CAS  Google Scholar 

  39. Minshall EM, Leung DY, Martin RJ, et al. Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol, 1997,17(3):326–333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-xia Lu  (陆小霞).

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 81200006), the Natural Science Foundation of Hubei Province (No. 2010CDB08804), and Wuhan Health Bureau Foundation (No. WX11B10) and by Wu Jieping Medical Fund (No. 32067501285).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Xx., McCoy, K.S., Hu, Wk. et al. Dexamethasone reduces IL-17 and Tim-3 expression in BALF of asthmatic mice. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 479–484 (2013). https://doi.org/10.1007/s11596-013-1145-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1145-4

Key words

Navigation