Skip to main content
Log in

Intracellular Staphylococcus aureus-induced NF-κB activation and proinflammatory responses of P815 cells are mediated by NOD2

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Staphylococcus aureus (S. aureus) is an important human pathogen which can cause a chronic condition with a high relapse rate despite the aggressive antimicrobial treatment. Recent studies showed that intracellular pattern recognition receptors (including NOD) in response to bacteria or bacterial products play a proinflammatory role by activating nuclear transcription factor-κB (NF-κB). But how NOD2 mediates the proinflammatory response to S. aureus in mast cells (MCs) is unclear. So, in this study, we attempted to examine the role of NOD2 in inflammatory responses of MCs to S. aureus. P815 cells (a mouse mast cell line) were cultured. Real-time PCR was used to detect the NOD2 mRNA expression in P815 cells during S. aureus infection. The siRNA against NOD2 gene was synthesized and transfected into S. aureus-infected P815 cells. By using the methods of ELISA and flow cytometry, the effects of NOD2 gene silencing on cell phagocytosis, cytokine secretion, NF-κB activation and cell apoptosis of the S. aureus-infected P815 cells were examined. It was found that S. aureus infection could increase the expression of NOD2 mRNA in P815 cells. NOD2 gene interference in P815 cells reduced the number of S. aureus engulfed by P815 cells, the level of cytokines and the activation of NF-κB. In addition, S. aureus could induce the apoptosis of P815 cells, but NOD2 gene silencing did not affect the cell apoptosis rate. Our data suggested that NOD2 plays a key role in pathogen recognition, signal transduction, and NF-κB activation in the inflammatory responses of MCs infected by S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowy FD. Staphylococcus aureus infections. N Engl J Med, 1998,339(8):520–532

    Article  PubMed  CAS  Google Scholar 

  2. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature, 2000,406(6797):782–787

    Article  PubMed  CAS  Google Scholar 

  3. Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol, 2001,2(10):947–950

    Article  PubMed  CAS  Google Scholar 

  4. Rosenkranz AR, Coxon A, Maurer M, et al. Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. J Immunol, 1998,161(12):6463–6467

    PubMed  CAS  Google Scholar 

  5. Prodeus AP, Zhou X, Maurer M, et al. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature, 1997,390(6656):172–175

    Article  PubMed  CAS  Google Scholar 

  6. Talreja J, Kabir MH, Filla MB, et al. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology, 2004,113(2):224–233

    Article  PubMed  CAS  Google Scholar 

  7. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2001,2(8):675–680

    Article  PubMed  CAS  Google Scholar 

  8. Dziarski R, Gupta D. Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: a reevaluation. Infect Immun, 2005,73(8):5212–5216

    Article  PubMed  CAS  Google Scholar 

  9. Girardin SE, Boneca IG, Carneiro LA, et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science, 2003,300(5625):1584–1587

    Article  PubMed  CAS  Google Scholar 

  10. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity, 1999,11(4):443–451

    Article  PubMed  CAS  Google Scholar 

  11. Chamaillard M, Hashimoto M, Horie Y, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol, 2003,4(7):702–707

    Article  PubMed  CAS  Google Scholar 

  12. Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem, 2003,278(11):8869–8872

    Article  PubMed  CAS  Google Scholar 

  13. Girardin SE, Travassos LH, Herve M, et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem, 2003,278(43):41702–41708

    Article  PubMed  CAS  Google Scholar 

  14. Liu X, Chauhan VS, Marriott I. NOD2 contributes to the inflammatory responses of primary murine microglia and astrocytes to Staphylococcus aureus. Neurosci Lett, 2010,474(2):93–98

    Article  PubMed  CAS  Google Scholar 

  15. Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature, 2002,416(6877):194–199

    Article  PubMed  CAS  Google Scholar 

  16. Mccarthy JV, Ni J, Dixit VM. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem, 1998,273(27):16968–16975

    Article  PubMed  CAS  Google Scholar 

  17. Lin TJ, Gao Z, Arock M, et al. Internalization of FimH+ Escherichia coli by the human mast cell line (HMC-1 5C6) involves protein kinase C. J Leukoc Biol, 1999,66(6):1031–1038

    PubMed  CAS  Google Scholar 

  18. Arock M, Ross E, Lai-Kuen R, et al. Phagocytic and tumor necrosis factor alpha response of human mast cells following exposure to gram-negative and gram-positive bacteria. Infect Immun, 1998,66(12):6030–6034

    PubMed  CAS  Google Scholar 

  19. Wu L, Feng BS, He SH, et al. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: the role of TLR2 and NOD2. Immunol Cell Biol, 2007,85(7):538–545

    Article  PubMed  CAS  Google Scholar 

  20. Rocha-De-Souza CM, Berent-Maoz B, Mankuta D, et al. Human mast cell activation by Staphylococcus aureus: interleukin-8 and tumor necrosis factor alpha release and the role of Toll-like receptor 2 and CD48 molecules. Infect Immun, 2008,76(10):4489–4497

    Article  PubMed  CAS  Google Scholar 

  21. Hamill RJ, Vann JM, Proctor RA. Phagocytosis of Staphylococcus aureus by cultured bovine aortic endothelial cells: model for postadherence events in endovascular infections. Infect Immun, 1986,54(3):833–836

    PubMed  CAS  Google Scholar 

  22. Shimada T, Park BG, Wolf AJ, et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe, 2010,7(1):38–49

    Article  PubMed  CAS  Google Scholar 

  23. Ellington JK, Harris M, Webb L, et al. Intracellular Staphylococcus aureus. A mechanism for the indolence of osteomyelitis. J Bone Joint Surg Br, 2003,85(6):918–921

    CAS  Google Scholar 

  24. Hess DJ, Henry-Stanley MJ, Erickson EA, et al. Intracellular survival of Staphylococcus aureus within cultured enterocytes. J Surg Res, 2003,114(1):42–49.

    Article  PubMed  CAS  Google Scholar 

  25. Palmqvist N, Patti JM, Tarkowski A, et al. Expression of staphylococcal clumping factor A impedes macrophage phagocytosis. Microbes Infect, 2004,6(2):188–195

    Article  PubMed  CAS  Google Scholar 

  26. Lin TJ, Garduno R, Boudreau RT, et al. Pseudomonas aeruginosa activates human mast cells to induce neutrophil transendothelial migration via mast cell-derived IL-1 alpha and beta. J Immunol, 2002,169(8):4522–4530

    PubMed  CAS  Google Scholar 

  27. Mielcarek N, Hornquist EH, Johansson BR, et al. Interaction of Bordetella pertussis with mast cells, modulation of cytokine secretion by pertussis toxin. Cell Microbiol, 2001,3(3):181–188

    Article  PubMed  CAS  Google Scholar 

  28. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006,124(4):783–801

    Article  PubMed  CAS  Google Scholar 

  29. Plaut M, Pierce JH, Watson CJ, et al. Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature, 1989,339(6219):64–67

    Article  PubMed  CAS  Google Scholar 

  30. Cole N, Bao S, Stapleton F, et al. Pseudomonas aeruginosa keratitis in IL-6-deficient mice. Int Arch Allergy Immunol, 2003,130(2):165–172

    Article  PubMed  CAS  Google Scholar 

  31. Shefler I, Salamon P, Reshef T, et al. T cell-induced mast cell activation: a role for microparticles released from activated T cells. J Immunol, 2010,185(7):4206–4212

    Article  PubMed  CAS  Google Scholar 

  32. Caron G, Delneste Y, Roelandts E, et al. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J Immunol, 2001,166(10):6000–6006

    PubMed  CAS  Google Scholar 

  33. Caron G, Delneste Y, Roelandts E, et al. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J Immunol, 2001,167(7):3682–3686

    PubMed  CAS  Google Scholar 

  34. Mazzoni A, Young HA, Spitzer JH, et al. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J Clin Invest, 2001,108(12):1865–1873

    PubMed  CAS  Google Scholar 

  35. Lien E, Sellati TJ, Yoshimura A, et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem, 1999,274(47):33419–33425

    Article  PubMed  CAS  Google Scholar 

  36. Danforth JM, Strieter RM, Kunkel SL, et al. Macrophage inflammatory protein-1 alpha expression in vivo and in vitro: the role of lipoteichoic acid. Clin Immunol Immunopathol, 1995,74(1):77–83

    Article  PubMed  CAS  Google Scholar 

  37. Uehara A, Yang S, Fujimoto Y, et al. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell Microbiol, 2005,7(1):53–61

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 2005,307(5710):731–734

    Article  PubMed  CAS  Google Scholar 

  39. Shaw MH, Kamada N, Warner N, et al. The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trends Immunol, 2011,32(2):73–79

    Article  PubMed  CAS  Google Scholar 

  40. Xu H, He Y, Yang X, et al. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology, 2007,46(6):920–926

    Article  PubMed  CAS  Google Scholar 

  41. Hotchkiss RS, Dunne WM, Swanson PE, et al. Role of apoptosis in Pseudomonas aeruginosa pneumonia. Science, 2001,294(5548):1783

    Article  PubMed  CAS  Google Scholar 

  42. Jenkins CE, Swiatoniowski A, Power MR, et al. Pseudomonas aeruginosa-induced human mast cell apoptosis is associated with up-regulation of endogenous Bcl-xS and down-regulation of Bcl-xL. J Immunol, 2006,177(11): 8000–8007

    PubMed  CAS  Google Scholar 

  43. da Silva Correia J, Miranda Y, Leonard N, et al. Regulation of Nod1-mediated signaling pathways. Cell Death Differ, 2007,14(4):830–839

    Article  PubMed  Google Scholar 

  44. Haslinger B, Strangfeld K, Peters G, et al. Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cell Microbiol, 2003,5(10):729–741

    Article  PubMed  CAS  Google Scholar 

  45. Menzies BE, Kourteva I. Staphylococcus aureus alpha-toxin induces apoptosis in endothelial cells. FEMS Immunol Med Microbiol, 2000,29(1):39–45

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Song  (宋建新).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (No. 30873189) and the National 973 Project of China (MOST, 2007CB512900).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Wang, L., Gong, F. et al. Intracellular Staphylococcus aureus-induced NF-κB activation and proinflammatory responses of P815 cells are mediated by NOD2. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 32, 317–323 (2012). https://doi.org/10.1007/s11596-012-0055-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-012-0055-1

Key words

Navigation