Skip to main content
Log in

A Tremella-like Mesoporous Calcium Silicate Loaded by TiO2 with Robust Adsorption and Photocatalytic Degradation Capabilities

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A titanium dioxide loaded tremella-like mesoporous calcium silicate hydrate (TiO2@CSH) with both adsorption and photocatalytic degradation activity was successfully prepared by a hydrothermal method combined with sol-gel strategy in two steps in this work. Tremella-shaped CSH provides abundant active sites for accommodating of TiO2, thus the corresponding TiO2@CSH achieved a high loading ratio of 36.73%. Such a special shaped TiO2@CSH exhibits excellent pre-enrichment capacity and photocatalytic degradation capacity for organic pollutants. Bisphenol A (BPA) removal experiments show that TiO2@CSH can remove 91.17% of BPA from aqueous solutions. Studies on removal mechanism suggest that BPA tends to bind on the interface between CSH and TiO2 and the pre-enrichment process conforms to the intraparticle diffusion model; and then, it is decomposed to harmless substances of CO2 and H2O during the photocatalytic process. The experimental results show that loading functional nanoparticles such as TiO2 on the surface of inorganic porous materials can endow inert porous materials with new functions such as photocatalytic degradation, which effectively expands the application range of inorganic porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang MM, Fan BM, Wen BY, et al. Experimental and Theoretical Studies on the Removal Mechanism of Formaldehyde from Water by Mesoporous Calcium Silicate[J]. Sci. China Technol. Sci., 2020, 63: 2098–2112

    Article  CAS  Google Scholar 

  2. Awad AM, Shaikh SMR, Jalab R, et al. Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review[J]. Sep. Purif. Technol., 2019, 228: 115719

    Article  CAS  Google Scholar 

  3. Erdem E, Colgecen G, Donat R. The Removal of Textile Dyes by Diatomite Earth[J]. J. Colloid Interf. Sci., 2005, 282: 314–319

    Article  CAS  Google Scholar 

  4. Wu XM, Wen BY. A Cauliflower-shaped Nickel@Porous Calcium Silicate Core-shell Composite: Preparation and Enhanced Electromagnetic Shielding Performance[J]. Compos. Sci. Technol., 2020, 199: 108343

    Article  CAS  Google Scholar 

  5. Wu XM, Wen BY. Vermicular Ni@RL-CS: Preparation, Characterization and Its Applications in Electromagnetic Shielding[J]. Ceram. Int., 2021, 47: 28698–28713

    Article  CAS  Google Scholar 

  6. Jiang N, Shang R, Heijman SGJ, et al. Adsorption of Triclosan, Trichlorophenol and Phenol by High Silica Zeolites: Adsorption Efficiencies and Mechanisms[J]. Sep. Purif. Technol., 2019, 235: 116152

    Article  Google Scholar 

  7. Zhang Z, Wang X, Zhao J, Phosphate Recovery from Wastewater using Calcium Silicate Hydrate (C-S-H): Sonochemical Synthesis and Properties[J]. Environ. Sci. Wat. Res. Technol., 2019, 5: 131–139

    Article  CAS  Google Scholar 

  8. Wang MM, Wen BY, Fan BM, et al. Study on Adsorption Mechanism of Silicate Adsorbents with Different Morphologies and Pore Structures towards Formaldehyde in Water[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2020, 599: 124887

    Article  CAS  Google Scholar 

  9. Etacheri V, Valentin CD, Schneider J, et al. Visible-light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments[J]. J. Photochem. Photobiol. C Photochem. Rev., 2015, 25: 1–29

    Article  CAS  Google Scholar 

  10. Han XG, Qin K, Jin MS, et al. Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties[J]. J. Am. Chem. Soc., 2009, 131: 3152–3153

    Article  CAS  Google Scholar 

  11. Belgiorno V, Luigi R, Despo F, et al. Review on Endocrine Disrupting-emerging Compounds in Urban Wastewater: Occurrence and Removal by Photocatalysis and Ultrasonic Irradiation for Wastewater Reuse[J]. Desalination, 2007, 215: 166–176

    Article  CAS  Google Scholar 

  12. Sun S, Jiang Y, Yu L, et al. Enhanced Photocatalytic Activity of Microwave Treated TiO2 Pillared Montmorillonite[J]. Mater. Chem. Phys., 2006, 98: 377–381

    Article  CAS  Google Scholar 

  13. Parlett CMA, Karen W, Lee AF. Hierarchical Porous Materials: Catalytic Applications[J]. Chem. Soc. Rev., 2013, 42: 3876–3893

    Article  CAS  Google Scholar 

  14. Xu F, Cheng G, Song S, et al. Insights into Promoted Adsorption Capability of Layered BiOCl Nanostructures Decorated with TiO2 Nanoparticles[J]. ACS Sustain. Chem. Eng., 2016, 4: 7013–7022

    Article  CAS  Google Scholar 

  15. Zhang B, Maimaiti H, Zhang DD, et al. Preparation of Coal-based C-Dots/TiO2 and Its Visible-light Photocatalytic Characteristics for Degradation of Pulping Black Liquor[J]. J. Photochem. Photobiol. A-Chem., 2017, 345: 54–62

    Article  CAS  Google Scholar 

  16. Wei Z, Liang F, Liu Y, et al. Photoelectrocatalytic Degradation of Phenol-containing Wastewater by TiO2/g-C3N4 Hybrid Heterostructure Thin Film[J]. Appl. Catal. B-Environ., 2017, 201: 600–606

    Article  CAS  Google Scholar 

  17. Jung K, Lee J, Kim YM, et al. Effect of Manganese Dopants on Defects, Nano-strain, and Photovoltaic Performance of Mn-CdS/CdSe Nanocomposite-sensitized ZnO Nanowire Solar Cells[J]. Compos. Sci. Technol., 2019, 179: 79–87

    Article  CAS  Google Scholar 

  18. Xu B, Maimaiti H, Wang SX, et al. Preparation of Coal-based Graphene Oxide/SiO2 Nanosheet and Loading ZnO Nanorod for Photocatalytic Fenton-like Reaction[J]. Appl. Surf. Sci., 2019, 498: 143835

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang J, Liu X, et al. Synthesis and Characterization of Activated Carbon-coated SiO2/TiO2-xCx Nanoporous Composites with High Adsorption Capability and Visible Light Photocatalytic Activity[J]. Mater. Chem. Phys., 2012, 135: 579–586

    Article  CAS  Google Scholar 

  20. Wang R, Ren D, Xia S, et al. Photocatalytic Degradation of Bisphenol A (BPA) using Immobilized TiO2 and UV Illumination in a Horizontal Circulating Bed Photocatalytic Reactor (HCBPR)[J]. J. Hazard. Mater., 2009, 169: 926–932

    Article  CAS  Google Scholar 

  21. Hu Z, Tao X, Fang B. Photocatalytic Degradation of Vehicle Exhaust using Fe-doped TiO2 Loaded on Activated Carbon[J]. Appl. Surf. Sci., 2017, 420: 34–42

    Article  CAS  Google Scholar 

  22. Liu Y, Zhang D. The Preparation of Reduced Graphene Oxide-TiO2 Composite Materials towards Transparent, Strain Sensing and Photodegradation Multifunctional Films[J]. Compos. Sci. Technol., 2016, 137: 102–108

    Article  CAS  Google Scholar 

  23. Chin SS, Tuti Mariana L, Ken C, et al. Factors Affecting the Performance of a Low-pressure Submerged Membrane Photocatalytic Reactor[J]. Chem. Eng. J., 2007, 130: 53–63

    Article  CAS  Google Scholar 

  24. Zhang Y, Cui W, An W, et al. Combination of Photoelectrocatalysis and Adsorption for Removal of Bisphenol A over TiO2-graphene Hydrogel with 3D Network Structure[J]. Appl. Catal. B Environ., 2018, 221: 36–46

    Article  CAS  Google Scholar 

  25. Shi JW, Chen SH, Shao H. Favorable Recycling Photocatalyst TiO2/CFA: Effects of Loading Percent of TiO2 on the Structural Property and Photocatalytic Activity[J]. Appl. Surf. Sci., 2010, 330: 41–48

    CAS  Google Scholar 

  26. Shi JW, Chen SH, Wang SM, et al. Favorable Recycling Photocatalyst TiO2/CFA: Effects of Calcination Temperature on the Structural Property and Photocatalytic Activity[J]. J. Mol. Catal. A Chem., 2010, 330: 41–48

    Article  CAS  Google Scholar 

  27. Shi JW, Chen SH, Wang SM, et al. Favorable Recycling Photocatalyst TiO2/CFA: Effects of Loading Method on the Structural Property and Photocatalytic Activity[J]. J. Mol. Catal. A Chem., 2009, 303: 141–147

    Article  CAS  Google Scholar 

  28. Meng H, Hou W, Xu X, et al. TiO2-loaded Activated Carbon Fiber: Hydrothermal Synthesis, Adsorption Properties and Photo Catalytic Activity under Visible Light Irradiation[J]. Particuology, 2014, 14: 38–43

    Article  CAS  Google Scholar 

  29. Diaz Weinstein S, Villafane JJ, Juliano N, et al. Adolescent Exposure to Bisphenol-A Increases Anxiety and Sucrose Preference but Impairs Spatial Memory in Rats Independent of Sex[J]. Brain Res., 2013, 1529: 56–65

    Article  CAS  Google Scholar 

  30. Liu L, Liu J, Zhao L, et al. Synthesis and Characterization of Magnetic Fe3O4@CaSiO3 Composites and Evaluation of their Adsorption Characteristics for Heavy Metal Ions[J]. Environ. Sci. Pollut. Res., 2019, 26: 8721–8736

    Article  CAS  Google Scholar 

  31. Guan W, Zhao X, Fluoride Recovery using Porous Calcium Silicate Hydrates via Spontaneous Ca2+ and OH Release[J]. Sep. Purif. Technol., 2016, 165: 71–77

    Article  CAS  Google Scholar 

  32. Li CX, Zhong H, Wang S, et al. Preparation of MnO2 and Calcium Silicate Hydrate from Electrolytic Manganese Residue and Evaluation of Adsorption Properties[J]. J. Cent. South Univ., 2015, 22: 2493–2502

    Article  CAS  Google Scholar 

  33. Tang B, Chen H, He Y, et al. Influence from Defects of Three-dimensional Graphene Network on Photocatalytic Performance of Composite Photocatalyst[J]. Compos. Sci. Technol., 2017, 150: 54–64

    Article  CAS  Google Scholar 

  34. Ma X, Zhou W, Chen Y. Structure and Photocatalytic Properties of Mn-doped TiO2 Loaded on Wood-based Activated Carbon Fiber Composites[J]. Mater., 2017, 10: 631

    Article  Google Scholar 

  35. Gao Z, Yang H, Fu X, et al. Efficient Photoreduction of Cr(VI) on TiO2/Functionalized Activated Carbon (TiO2/AC-AEMP): Improved Adsorption of Cr(VI) and Induced Transfer of Electrons[J]. Environ. Sci. Pollut. Res. Int., 2020, 27: 17446–17457

    Article  CAS  Google Scholar 

  36. Ahmad A, Razali MH, Mamat M, et al. Adsorption of Methyl Orange by Synthesized and Functionalized-CNTs with 3-aminopropyltriethoxysilane Loaded TiO2 Nanocomposites[J]. Chemosphere, 2017, 168: 474–482

    Article  CAS  Google Scholar 

  37. Yang L, Wang FZ, Shu C, et al. TiO2/Porous Cementitious Composites: Influences of Porosities and TiO2 Loading Levels on Photocatalytic Degradation of Gaseous Benzene[J]. Constr. Build. Mater., 2017, 150: 774–780

    Article  CAS  Google Scholar 

  38. Joan E. Powder Surface Area and Porosity[J]. Chapman and Hall, 1984, 85: 90118–901189

    Google Scholar 

  39. Saleh TA, Siddiqui MN, Al-Arfaj AA. Kinetic and Intraparticle Diffusion Studies of Carbon Nanotubes-titania for Desulfurization of Fuels[J]. Pet. Sci. Technol., 2016, 34: 1468–1474

    Article  CAS  Google Scholar 

  40. Ocampo-Perez R, Leyva-Ramos R, Alonso-Davila P, et al. Modeling Adsorption Rate of Pyridine onto Granular Activated Carbon[J]. Chem. Eng. J., 2010, 165: 133–141

    Article  CAS  Google Scholar 

  41. Sarrafzadeh MHJD, Treatment W. An Adsorption Diffusion Model for Removal of Copper (II) from Aqueous Solution by Pyrolytic Tyre Char[J]. Desalin. Water Treat., 2013, 51: 5664–5673

    Article  Google Scholar 

  42. Sekine T, Nakatani KJL. Intraparticle Diffusion and Adsorption Isotherm for Sorption in Silica Gel Studied by Single-microparticle Injection and Microabsorption Methods[J]. Langmuir, 2002, 18: 694–697

    Article  CAS  Google Scholar 

  43. Bakardjieva S, Fajgar R, Jakubec I, et al. Photocatalytic Degradation of Bisphenol A Induced by Dense Nanocavities Inside Aligned 2D-TiO2 Nanostructures[J]. Catal. Today, 2019, 328: 189–201

    Article  CAS  Google Scholar 

  44. Yu DT, Zheng Z, Rong JY, et al. Bio-template Synthesis of Spirulina/TiO2 Composite with Enhanced Photocatalytic Performance[J]. RSC Adv., 2012, 2: 10585–10591

    Article  Google Scholar 

  45. Ma N, Qiu Y, Zhang Y, et al. Reduced Graphene Oxide Enwrapped Pinecone-liked Ag3PO4/TiO2 Composites with Enhanced Photocatalytic Activity and Stability under Visible Light[J]. J. Alloy. Compd., 2015, 648: 818–825

    Article  CAS  Google Scholar 

  46. Tri NL, Jitae K, Thuan DV, et al. Improved Photocatalytic Decomposition of Methyl Ethyl Ketone Gas from Indoor Air Environment by using TiO2/Graphene Oxide[J]. Mater. Res. Express, 2019, 6: 105509

    Article  Google Scholar 

  47. Li Y, Cui W, Liu L, et al. Removal of Cr(VI) by 3D TiO2-graphene Hydrogel via Adsorption Enriched with Photocatalytic Reduction[J]. Appl. Catal. B Environ., 2016, 199: 412–423

    Article  CAS  Google Scholar 

  48. Zhu G, Hojamberdiev M, Tan C, et al. Photodegradation of Organic Dyes with Anatase TiO2 Nanoparticles-loaded BiOCl Nanosheets with Exposed {001} Facets under Simulated Solar Light[J]. Mater. Chem. Phys., 2014, 147: 1146–1156

    Article  CAS  Google Scholar 

  49. Watanabe N, Horikoshi S, Kawabe H, et al. Photodegradation Mechanism for Bisphenol A at the TiO2/H2O Interfaces[J]. Chemosphere, 2003, 52: 851–859

    Article  CAS  Google Scholar 

  50. Dehghani MH, Ghadermazi M, Bhatnagar A, et al. Adsorptive Removal of Endocrine Disrupting Bisphenol A from Aqueous Solution using Chitosan[J]. J. Environ. Eng. ASCE, 2016, 4: 2647–2655

    CAS  Google Scholar 

  51. Gan W, Zhang J, Niu HH, et al. Fabrication of Ag/AgBr/TiO2 Composites with Enhanced Solar-light Photocatalytic Properties[J]. Colloid. Surface. A., 2019, 583: 123968

    Article  CAS  Google Scholar 

  52. Ma YX, Li X, Shao WJ, et al. Fabrication of 3D Porous Polyvinyl Alcohol/Sodium Alginate/Graphene Oxide Spherical Composites for the Adsorption of Methylene Blue[J]. J. Nanosci. Nanotechnol., 2020, 20: 2205–2213

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the Beijing Natural Science Foundation(No. 2192016), and the Beijing Natural Science Foundation and the Key Scientific Project of Beijing Municipal Education Commission(No. KZ202110011018)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bianying Wen  (温变英) or Baomin Fan  (樊保民).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Wen, B., Fan, B. et al. A Tremella-like Mesoporous Calcium Silicate Loaded by TiO2 with Robust Adsorption and Photocatalytic Degradation Capabilities. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 184–193 (2022). https://doi.org/10.1007/s11595-022-2516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2516-0

Key words

Navigation