Skip to main content
Log in

KGM Derived CNTs Foam/Epoxy Composites with Excellent Microwave Absorbing Performance

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We adopted a green, economical and simple method in which konjac glucomannan (KGM) was used as a carrier to support CNTs to construct a three-dimensional structure filled with epoxy resin to improve the absorbing performance of epoxy resin. Through the reflection of the internal multi-level pore structure and the dielectric loss effect of CNTs, the dissipation and absorption of electromagnetic waves are realized. This KGM derived CNTs foam exhibits high specific microwave absorption performance with a minimum absorption of −25.2 dB at 11.3 GHz and a qualified bandwidth of around 2.89 GHz (RL⩽ −10 dB), which is achieved by KDCF5/Epoxy with the coating layer thickness of 1.8 mm. We provide a novel and cost-effective method to achieve excellent absorbing performance under thin thickness and low load. The CNTs foam also has a lower density (6.5 mg/cm3) and can improve the absorbing properties of the epoxy while maintaining its various advantages, thereby expanding the application range of the epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viau G, Ravel F, Ache O, et al. Preparation and Microwave Characterization of Spherical and Monodisperse Co Ni Particles[J]. J. of Mag. and Mag., 1995, 140: 377–378

    Article  Google Scholar 

  2. Mdarhri A, Carmona F, Brosseau C, et al. Direct Current Electrical and Microwave Properties of Polymer-multiwalled Carbon Nanotubes Composites[J]. J. of App. Phy., 2008, 103(5): 054303

    Article  Google Scholar 

  3. Hou T, Wang B, Jia Z, et al. A Review of Metal Oxide-related Microwave Absorbing Materials from the Dimension and Morphology Perspective[J]. J. of Mat. Sci., 2019, 30(12): 10961–10984

    CAS  Google Scholar 

  4. Gupta S, Tai NH. Carbon Materials and Their Composites for Electromagnetic Interference Shielding Effectiveness in X-band[J]. Carbon, 2019, 152: 159–187

    Article  CAS  Google Scholar 

  5. Qi X, Qin C, Zhong W, et al. Large-scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties[J]. Materials., 2010, 3(8): 4142–4174

    Article  CAS  Google Scholar 

  6. Munir A. Microwave Radar Absorbing Properties of Multiwalled Carbon Nanotubes Polymer Composites: A Review[J]. Adv. in Pol. Tec., 2017, 36(3): 362–370

    Article  CAS  Google Scholar 

  7. Alegaonkar AP, Alegaonkar PS. Nanocarbons: Preparation, Assessments, and Applications in Structural Engineering, Spintronics, Gas sensing, EMI shielding, and Cloaking in X-band[J]. In Nano. and Its Com., 2019:171–285

  8. Wang C, Murugadoss V, Kong J, et al. Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding[J]. Carbon, 2018, 140: 696–733

    Article  CAS  Google Scholar 

  9. Abbasi H, Antunes M, Velasco JI. Recent Advances in Carbon-based Polymer Nanocomposites for Electromagnetic Interference Shielding[J]. Pro. in Mat. Sci., 2019, 103: 319–373

    Article  CAS  Google Scholar 

  10. Sankaran S, Deshmukh K, Ahamed MB, et al. Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review[J]. Com. Part A: App. Sci. and Man., 2018, 114: 49–71

    Article  CAS  Google Scholar 

  11. Micheli D, Apollo C, Pastore R, et al. X-Band Microwave Characterization of Carbon-based Nanocomposite Material, Absorption Capability Comparison and RAS Design Simulation[J]. Com. Sci. and Tec., 2010, 70(2): 400–409

    Article  CAS  Google Scholar 

  12. Choi BG, Yang M, Hong WH, et al. 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities[J]. ACS Nano., 2012, 6(5): 4020–4028

    Article  CAS  Google Scholar 

  13. Liu J, Zhang HB, Sun R, et al. Hydrophobic, Flexible, and Lightweight MXene Foams for High-performance Electromagnetic-interference Shielding[J]. Adv. Mat., 2017, 29(38): 1702367

    Article  Google Scholar 

  14. Liu Z, Zhao N, Shi C, et al. Synthesis of Three-dimensional Carbon Networks Decorated with Fe3O4 Nanoparticles as Lightweight and Broadband Electromagnetic Wave Absorber[J]. J. of All. and Com., 2019, 776: 691–701

    Article  CAS  Google Scholar 

  15. Qiu X, Wang L, Zhu H, et al. Lightweight and Efficient Microwave Absorbing Materials Based on Walnut Shell-derived Nano-porous Carbon[J]. Nan., 2017, 9(22): 7408–7418

    CAS  Google Scholar 

  16. Lai Y, Wang S, Qian D, et al. Tunable Electromagnetic Wave Absorption Properties of Nickel Microspheres Decorated Reduced Graphene Oxide[J]. Cer. Int., 2017, 43(15): 12904–12914

    Article  CAS  Google Scholar 

  17. Qiu J, Qiu T. Fabrication and Microwave Absorption Properties of Magnetite Nanoparticle-carbon Nanotube-hollow Carbon Fiber Composites[J]. Carbon, 2015, 81: 20–28

    Article  CAS  Google Scholar 

  18. Makeiff DA, Huber T. Microwave Absorption by Polyaniline-carbon Nanotube Composites[J]. Syn. Met., 2006, 156(7–8): 497–505

    Article  CAS  Google Scholar 

  19. Wang L, Liu M, Wang G, et al. An Ultralight Nitrogen-doped Carbon Aerogel Anchored by Ni-NiO Nanoparticles for Enhanced Microwave Adsorption Performance[J]. J. of All. and Com., 2019, 776: 43–51

    Article  CAS  Google Scholar 

  20. Zhu H, Lin H, Guo H, et al. Microwave Absorbing Property of Fe-filled Carbon Nanotubes Synthesized by a Practical Route[J]. Mat. Sci. and Eng., 2007, 138(1): 101–104

    Article  CAS  Google Scholar 

  21. Ate M, Eker AA, Eker B. Carbon Nanotube-based Nanocomposites and Their Applications[J]. J. of Adh. Sci. and Tec., 2017, 31(18): 1977–1997

    Article  Google Scholar 

  22. Wang Y, Mi H, Zheng Q, et al. Flexible Infrared Responsive Multi-walled Carbon Nanotube/Form-stable Phase Change Material Nanocomposites[J]. ACS App. Mat. & Int., 2015, 7(38): 21602–21609

    Article  CAS  Google Scholar 

  23. Poduval RK, Noimark S, Colchester RJ, et al. Optical Fiber Ultrasound Transmitter with Electrospun Carbon Nanotube-polymer Composite[J]. App. Phy. Let., 2017, 110(22): 223701

    Article  Google Scholar 

  24. Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature, 2005, 438(7065): 197–200

    Article  CAS  Google Scholar 

  25. Abbasi H, Antunes M, Velasco J. Graphene Nanoplatelets-reinforced Polyetherimide Foams Prepared by Water Vapor-induced Phase Separation[J]. Exp. Pol. Let., 2015, 9(5): 412–423

    Article  CAS  Google Scholar 

  26. Kotov NA. Carbon Sheet Solutions[J]. Nature, 2006, 442(7100): 254–255

    Article  CAS  Google Scholar 

  27. Sebastián D, Baglio V, Girolamo M, et al. Carbon Nanofiber-based Counter Electrodes for Low Cost Dye-sensitized Solar Cells[J]. J.of Pow. Sou., 2014, 250: 242–249

    Article  Google Scholar 

  28. Harris PJ. Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century[J]. Ame. Ass. of Phy. Tea., 2004: 414–416

  29. Brown JM, Anderson DP, Justice RS, et al. Hierarchical Morphology of Carbon Single-walled Nanotubes during Ssonication in an Aliphatic Diamine[J]. Polymer, 2005, 46(24): 10854–10865

    Article  CAS  Google Scholar 

  30. Li Y, Wei B, Liang J, et al. Transformation of Carbon Nanotubes to Nanoparticles by Ball Milling Process[J]. Carbon, 1999, 37(3): 493–497

    Article  CAS  Google Scholar 

  31. Park C, Ounaies Z, Watson KA, et al. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization under Sonication[J]. Che. Phy. Let., 2002, 364(3–4): 303–308

    Article  CAS  Google Scholar 

  32. McNally T, Pötschke P, Halley P, et al. Polyethylene Multiwalled Carbon Nanotube Composites[J]. Polymer, 2005, 46(19): 8222–8232

    Article  CAS  Google Scholar 

  33. Kumar R, Dhakate SR, Gupta T, et al. Effective Improvement of the Properties of Light Weight Carbon Foam by Decoration with Multiwall Carbon Nanotubes[J]. J. of Mat. Che., 2013, 1(18): 5727–5735

    Article  CAS  Google Scholar 

  34. Yang Y, Gupta MC, Dudley KL, et al. Novel Carbon Nanotube-polystyrene Foam Composites for Electromagnetic Interference Shielding[J]. Nano Letters, 2005, 5(11): 2131–2134

    Article  CAS  Google Scholar 

  35. Shi L, Zhao Y, Li Y, et al. Octahedron Fe3O4 Particles Supported on 3D MWCNT/Graphene Foam: In-situ Method and Application as a Comprehensive Microwave Absorption Material[J]. App. Sur. Sci., 2017, 416: 329–337

    Article  CAS  Google Scholar 

  36. Saib A, Bednarz L, Daussin R, et al. Carbon Nanotube Composites for Broadband Microwave Absorbing Materials[J]. IEEE Tra. on Mic. The., 2006, 54(6): 2745–2754

    CAS  Google Scholar 

  37. Ghanbari F, Dehaghi SM, Mahdavi H. Epoxy-based Multilayered Coating Containing Carbon Nanotube (CNT), Silicon Carbide (SiC), and Carbonyl Iron (CI) Particles: As Efficient Microwave Absorbing Materials[J]. J. of Co. Tec., 2020: 1–12

  38. Fu C, Huang H, Li X, et al. Adjusting the Microwave Absorption Properties of Carbon Nanotube Composites with Ferrocene by Annealing under Different Conditions[J]. J. of All.s and Com., 2020, 845: 156226

    Article  CAS  Google Scholar 

  39. Xu H, Yin X, Li M, et al. Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-assemblies for Ultrabroad-band Microwave Absorption[J]. ACS App. Mat. & Int., 2019, 11(25): 22628–22636

    Article  CAS  Google Scholar 

  40. Zhong B, Cheng Y, Wang M, et al. Three Dimensional Hexagonal Boron Nitride Nanosheet/Carbon Nanotube Composites with Light Weight and Enhanced Microwave Absorption Performance[J]. Com. Part A., 2018, 112: 515–524

    Article  CAS  Google Scholar 

  41. Shu R, Wan Z, Zhang J, et al. Facile Design of Three-dimensional Nitrogen-doped Reduced Graphene Oxide/multi-walled Carbon Nanotube Composite Foams as Lightweight and Highly Efficient Microwave Absorbers[J]. ACS App. Mat. & Int., 2019, 12(4): 4689–4698

    Article  Google Scholar 

  42. Zhang T, Xiao B, Zhou P, et al. Porous-carbon-nanotube Decorated Carbon Nanofibers With Effective Microwave Absorption Properties[J]. Nanotechnology, 2017, 28(35): 355708

    Article  Google Scholar 

  43. Yang Z, Che Y, Sun X, et al. Broadband Polarization-insensitive Microwave-Absorbing Composite Material based on Carbon Nanotube Film Metamaterial and Ferrite[J]. J. of App. Phy., 2019, 125(18): 185103

    Article  Google Scholar 

  44. Li Y, Li S, Zhang T, et al. 3D Hierarchical Co3O4/Reduced Graphene oxide/Melamine Derived Carbon Foam as a Comprehensive Microwave Absorbing Material[J]. J. of All. and Com., 2019, 792: 424–431

    Article  CAS  Google Scholar 

  45. Wu G, He Y, Zhan H, et al. A novel Fe3O4/Carbon Nanotube Composite Film With a Cratered Surface Structure for Effective Microwave Absorption[J]. J. of Mat. Sci., 2020, 31: 11508–11519

    CAS  Google Scholar 

  46. Haritha T, Ramji K, Subrahmanyam C, et al. Microwave-absorption Characteristics of Polyaniline-coated Multi-walled Carbon Nanotube Composites[J]. Pla. Rub. and Com., 2020: 1–9

  47. Savi P, Giorcelli M, Quaranta S. Multi-walled Carbon Nanotubes Composites for Microwave Absorbing Applications[J]. App. Sci., 2019, 9(5): 851-

    Article  CAS  Google Scholar 

  48. Kuang J, Hou X, Xiao T, et al. Three-dimensional Carbon Nanotube/SiC Nanowire Composite Network Structure for High-efficiency Electromagnetic Wave Absorption[J]. Cer. Int., 2019, 45(5): 6263–6267

    Article  CAS  Google Scholar 

  49. Jia Z, Lin K, Wu G, et al. Recent Progresses of High-temperature Microwave-Absorbing Materials[J]. Nano, 2018, 13(06): 1830005

    Article  CAS  Google Scholar 

  50. Yan J, Huang Y, Han X, et al. Metal Organic Framework (ZIF-67)-derived Hollow CoS2/N-doped Carbon Nanotube Composites for Extraordinary Electromagnetic Wave Absorption[J]. Com. Part B., 2019, 163: 67–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Laboratory of Polymer Matrix Composites, Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao  (肇研).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, Y., Li, S. et al. KGM Derived CNTs Foam/Epoxy Composites with Excellent Microwave Absorbing Performance. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 155–162 (2022). https://doi.org/10.1007/s11595-022-2512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2512-4

Key words

Navigation