Skip to main content
Log in

Isothermal Crystallization Kinetics of Nylon 10T and Nylon 10T/1010 Copolymers: Effect of Sebacic Acid as a Third Comonomer

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Nylon 10T and nylon 10T/1010 samples were synthesized by direct melt polymerization. The isothermal crystallization kinetics of nylon 10T and nylon 10T/1010 was investigated by means of differential scanning calorimetry (DSC). The crystallization kinetics under isothermal condition has been analyzed by the Avrami equation. It was found that the Avrami equation was well-suited to describe the isothermal crystallization kinetics, combined with the results of the Turnbull-Fisher equation. The values of T 0 m and Kg were obtained by Hoffman-Weeks and Lauritzen-Hoffman equations, respectively. The activation energies for isothermal crystallization of nylon 10T and nylon 10T/1010 were determined using the Arrhenius equation and found to be -123.24 and -81.86 kJ·mol-1, respectively, which reveals that the crystallization ability of nylon 10T/1010 was lower than that of nylon 10T during the isothermal crystallization process. The crystal morphology was observed by means of polarized optical microscopy (POM) and X-ray diffraction (XRD). It was found that the addition of sebacic acid comonomer did not change the crystal form of nylon 10T, but significantly increased the number and decreased the size of spherulites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen J, Beake BD, Bell GA, et al. Investigation of the Nanomechanical Properties of Nylon 6 and Nylon 6/Clay Nanocomposites at Sub-Ambient Temperatures[J]. Journal of Experimental Nanoscience, 2016, 11(9): 695–706

    Article  Google Scholar 

  2. Wang WZ, Zhang YH. Environment-Friendly Synthesis of Long Chain Semiaromatic Polyamides[J]. Express Polymer Letters, 2009, 3(8): 470–476

    Article  Google Scholar 

  3. Wang WZ, Zhang YH. Synthesis of Semiaromatic Polyamides Based on Decanediamine[J]. Chinese Journal of Polymer Science, 2010, 28(4): 467–473

    Article  Google Scholar 

  4. Zhang CL, Wan L, Gu XP, et al. A Study on a Prepolymerization Process of Aromatic-Contained Polyamide Copolymers Pa(66-co-6T) via One-Step Polycondensation[J]. Macromolecular Reaction Engineering, 2015, 9(5): 512–521

    Article  Google Scholar 

  5. Rwei SP, Tseng YC, Chiu KC, et al. The Crystallization Kinetics of Nylon 6/6T and Nylon 66/6T Copolymers[J]. Thermochimica Acta, 2013, 555(5): 37–45

    Article  Google Scholar 

  6. Uddin AJ, Ohkoshi Y, Gotoh Y, et al. Influence of Moisture on the Viscoelastic Relaxations in Long Aliphatic Chain Contained Semiaromatic Polyamide, (PA9-T) Fiber[J]. Journal of Polymer Science Part B-Polymer Physics, 2003, 41(22): 2878–2891

    Article  Google Scholar 

  7. Uddin AJ, Gotoh Y, Ohkoshi Y, et al. Hydration in a New Semiaromatic Polyamide Observed by Humidity-Controlled Dynamic Viscoelastometry and X-ray Diffraction[J]. Journal of Polymer Science Part B-Polymer Physics, 2005, 43(13): 1640–1648

    Article  Google Scholar 

  8. Wang WZ, Wang XW, Li RX, et al. Environment-Friendly Synthesis of Long Chain Semiaromatic Polyamides with High Heat Resistance[J]. Journal of Applied Polymer Science, 2009, 114(4): 2036–2042

    Article  Google Scholar 

  9. Zhang CH, Huang XB, Zeng XB, et al. Fluidity Improvement of Semiaromatic Polyamides: Modification with Oligomers[J]. Journal of Applied Polymer Science, 2014, 131(7): 5621–5633

    Google Scholar 

  10. Novitsky TF, Mathias LJ. One-Pot Synthesis of Polyamide 12,T-polyamide-6 Block Copolymers[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2011, 49(10): 2271–2280

    Article  Google Scholar 

  11. Novitsky TF, Mathias LJ, Osborn S, et al. Synthesis and Thermal Behavior of Polyamide 12,T Random and Block Copolymers[J]. Macromolecular Symposia, 2012, 313-314(1): 90–99

    Article  Google Scholar 

  12. Novitsky TF, Lange CA, Mathias LJ, et al. Eutectic Melting Behavior of Polyamide 10,T-co-6,T and 12,T-co-6,T Copolyterephthalamides[J]. Polymer, 2010, 51(11): 2417–2425

    Article  Google Scholar 

  13. Battegazzore D. Bulk Vs Surface Flame Retardancy of Fully Bio-Based Polyamide 10,10[J]. RSC Advances, 2015, 5(49): 39424–39432

    Article  Google Scholar 

  14. Dong JX, Qu JH, Feng XY, et al. Development Status and Prospects of World Bio-Based Polyamides[J]. China Synthetic Fiber Industry, 2015, 38(5): 51–56 (in Chinese)

    Google Scholar 

  15. Zhang XK, Xie TX, Yang GS. Isothermal Crystallization and Melting Behaviors of Nylon 11/Nylon 66 Alloys by in Situ Polymerization[J]. Polymer, 2006, 47(6): 2116–2126

    Article  Google Scholar 

  16. Ferreira CI, Castel CD, Oviedo MAS, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Polypropylene/Exfoliated Graphite Nanocomposites[J]. Thermochimica Acta, 2013, 553(3): 40–48

    Article  Google Scholar 

  17. Neugebauer F, Ploshikhin V, Ambrosy J, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Polyamide 12 Used in Laser Sintering[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 925–933

    Article  Google Scholar 

  18. Gradys A, Sajkiewicz P, Zhuravlev E, et al. Kinetics of Isothermal and Non-Isothermal Crystallization of Poly(Vinylidene Fluoride) by Fast Scanning Calorimetry[J]. Polymer, 2016, 82: 40–48

    Article  Google Scholar 

  19. Zhang YS, Wang BB, Hu GS. Isothermal Crystallization Kinetics and Melting Behavior of Polyamide 11/Silica Nanocomposites Prepared by in Situ Melt Polymerization[J]. Journal of Applied Polymer Science, 2012, 123(1): 273–279

    Article  Google Scholar 

  20. Shashidhara GM, Pradeepa KG. Isothermal Crystallization of Polyamide 6/Liquid Natural Rubber Blends at High under Cooling[J]. Thermochimica Acta, 2014, 578(4): 1–9

    Article  Google Scholar 

  21. Liu HX, Huang YY, Yuan L, et al. Isothermal Crystallization Kinetics of Modified Bamboo Cellulose/PCL Composites[J]. Carbohydrate Polymers, 2010, 79(3): 513–519

    Article  Google Scholar 

  22. Cai J, Liu M, Wang L, et al. Isothermal Crystallization Kinetics of Thermoplastic Starch/Poly(Lactic Acid) Composites[J]. Carbohydrate Polymers, 2011, 86(2): 941–947

    Article  Google Scholar 

  23. Liu SY, Yu YN, Yi C, et al. Isothermal and Nonisothermal Crystallization Kinetics of Nylon-11[J]. Journal of Applied Polymer Science, 1998, 70(12): 2371–2380

    Article  Google Scholar 

  24. Ge CH, Ding P, Shi LY, et al. Isothermal Crystallization Kinetics and Melting Behavior of Poly(Ethylene Terephthalate)/Barite Nanocomposites[J]. Journal of Polymer Science Part B-Polymer Physics, 2009, 47(7): 655–668

    Article  Google Scholar 

  25. Run MT, Song HZ, Wang SJ, et al. Crystal Morphology, Melting Behaviors and Isothermal Crystallization Kinetics of SCF/PTT Composites[J]. Polymer Composites, 2009, 30(1): 87–94

    Article  Google Scholar 

  26. He H, Gu LX, Ozaki Y. Non-Isothermal Crystallization and Thermal Transitions of a Biodegradable, Partially Hydrolyzed Poly (Vinyl Alcohol)[J]. Polymer, 2006, 47(11): 3935–3945

    Article  Google Scholar 

  27. Liao RG, Yang B, Yu W, et al. Isothermal Cold Crystallization Kinetics of Polylactide/Nucleating Agents[J]. Journal of Applied Polymer Science, 2007, 104(1): 310–317

    Article  Google Scholar 

  28. Liu MY, Zhao QX, Wang YD, et al. Melting Behaviors, Isothermal and Non-Isothermal Crystallization Kinetics of Nylon 1212[J]. Polymer, 2003, 44(8): 2537–2545

    Article  Google Scholar 

  29. Zou P, Tang SW, Fu ZZ, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Modified Rape Straw Flour/High-Density Polyethylene Composites[J]. International Journal of Thermal Sciences, 2009, 48(4): 837–846

    Article  Google Scholar 

  30. Hoffman JD, Miller RL. Kinetic of Crystallization From the Melt and Chain Folding in Polyethylene Fractions Revisited: Theory and Experiment[J]. Polymer, 1997, 38(13): 3151–3212

    Article  Google Scholar 

  31. Cai J, Liu M, Wang L, et al. Isothermal Crystallization Kinetics of Thermoplastic Starch/Poly(Lactic Acid) Composites[J]. Carbohydrate Polymers, 2011, 86(2): 941–947

    Article  Google Scholar 

  32. Kalkar AK, Deshpe VD, Kulkarni MJ. Isothermal Crystallization Kinetics of Poly(Phenylene sulfide)/TLCP Composites.[J]. Polymer Engineering and Science, 2009, 13(s1-4): 651–654

    Google Scholar 

  33. Tjong SC, Chen SX, Li RKY. Crystallization Kinetics of Compatibilized Blends of a Liquid Crystalline Polymer with Polypropylene[J]. Journal of Applied Polymer Science, 1997, 64(4): 707–715

    Article  Google Scholar 

  34. Biber E, Gündüz G, Mavis B, et al. Compatibility Analysis of Nylon 6 and Poly(Ethylene-N-Butyl Acrylate-Maleic Anhydride) Elastomer Blends Using Isothermal Crystallization Kinetics[J]. Materials Chemistry and Physics, 2010, 122(1): 93–101

    Article  Google Scholar 

  35. Lin CC. The Rate of Crystallization of Poly(Ethylene Terephthalate) by Differential Scanning Calorimetry[J]. Polymer Engineering and Science, 1983, 23(3): 113–116

    Article  Google Scholar 

  36. Zhu G, Li CC, Li ZY. The Effects of Alkali Dehydroabietate on the Crystallization Process of Polypropylene[J]. European Polymer Journal, 2001, 37(5): 1007–1013

    Article  Google Scholar 

  37. Neugebauer F, Ploshikhin V, Ambrosy J, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Polyamide 12 Used in Laser Sintering[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 925–933

    Article  Google Scholar 

  38. Liu TX, Mo ZS, Wang SE, et al. Isothermal Melt and Cold Crystallization Kinetics of Poly(Aryl Ether Ether Ketone Ketone) (PEEKK)[J]. European Polymer Journal, 1997, 33(9): 1405–1414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Hu  (胡国胜).

Additional information

Supported by the National Science and Technology Support Program of China (No. 2013BAE02B01), the Special Project on the Integration of Industry, Education and Research of Guangdong Province (No. 2013B090500003), and the Commissioner Workstation Project of Guangdong Province (No. 2014A090906002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hu, G., Zhang, J. et al. Isothermal Crystallization Kinetics of Nylon 10T and Nylon 10T/1010 Copolymers: Effect of Sebacic Acid as a Third Comonomer. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1247–1255 (2018). https://doi.org/10.1007/s11595-018-1959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1959-9

Key words

Navigation