Skip to main content
Log in

A convenient method for preparing shape-controlled ZnO nanocrystals in a polyol/water mixture system without surfactants

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A facile solution-phase route for the synthesis of shape-controlled ZnO nanocrystals in a polyol/water mixture system was developed. The obtained nanocrystals were characterized by X-ray diffraction, transmission electron microscopy and UV-visible absorption spectroscopy. The results indicate that modulating the adding ways of water has a significant effect on the shape of the obtained nanocrystals. The addition of small quantity of water can increase the growth rate of crystals and leads to the formation of different shapes. The resulting shapes of the novel structures are diverse, including spheres, cones, and teardrops, all of which are obtained without any additional surfactants. These studies concerning the shape evolution of nanocrystals should be valuable for further design and for greater understanding of advanced nanoscale building-block architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A P Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271: 933–937

    Article  ADS  CAS  Google Scholar 

  2. W U Huynh, J J Dittmer, A P Alivisatos. Hybrid Nanorod-polymer Solar Cells[J]. Science, 2002, 295: 2 425–2 427

    Article  CAS  Google Scholar 

  3. T Hyeon. Chemical Synthesis of Magnetic Nanoparticles[J]. Chem. Commun., 2003, 8: 927–934

    Article  Google Scholar 

  4. B Liu, H C Zeng. Mesoscale Organization of CuO Nanoribbons: Formation of “Dandelions”[J]. J. Am. Chem. Soc., 2004, 126: 8 124–8 125

    CAS  Google Scholar 

  5. L Manna, E C Scher, A P Alivisatos. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-shaped CdSe Nanocrystals[J]. J. Am. Chem. Soc., 2000, 122:12 700–12 706

    Article  CAS  Google Scholar 

  6. X G Peng, L Manna, W D Yang, et al. Shape Control of CdSe Nanocrystals[J]. Nature, 2000, 404: 59–61

    Article  PubMed  ADS  CAS  Google Scholar 

  7. Q Song, Z J Zhang. Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals[J]. J. Am. Chem. Soc., 2004, 126: 6 164–6 168

    CAS  Google Scholar 

  8. D Yu, V W Yam. Controlled Synthesis of Monodisperse Silver Nanocubes in Water[J]. J. Am. Chem. Soc., 2004, 126:13 200–13 201

    CAS  Google Scholar 

  9. L Guo, Y L Ji, H B Xu, et al. Regularly Shaped, Single- crystalline ZnO Nanorods with Wurtzite Structure[J]. J. Am. Chem. Soc., 2002, 124: 14 864–14 865

    CAS  Google Scholar 

  10. J Q Xu, Y P Chen, Y D Li, et al. Gas Sensing Properties of ZnO Nanorods Prepared by Hydrothermal Method[J]. J. Mater. Sci., 2005, 40: 2 919–2 921

    CAS  Google Scholar 

  11. J Zhang, L D Sun, H Y Pan, et al. ZnO Nanowires Fabricated by a Convenient Route[J]. New J. Chem., 2002, 26: 33–34

    Article  MATH  Google Scholar 

  12. J Zhang, W Y Yu, L D Zhang. Fabrication of Semiconducting ZnO Nanobelts Using a Halide Source and Their Photoluminescence Properties[J]. Phys. Lett. A, 2002, 299:276–281

    Article  ADS  CAS  Google Scholar 

  13. J Q Hu, Q Li, X M Meng, et al. Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes[J]. Chem. Mater., 2003, 15: 305–308

    Article  CAS  Google Scholar 

  14. J Q Hu, Q Li, N B Wong, et al. Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers[J]. Chem. Mater., 2002, 14:1 216–1 219

    Article  CAS  Google Scholar 

  15. X M Sun, X Chen, Y D Li. Evaporation Growth of Multipod ZnO Whiskers Assisted by a Cu2+ Etching Technique[J]. J. Cryst. Growth., 2002, 244: 218–223

    Article  ADS  CAS  Google Scholar 

  16. Y G Sun, Y N Xia. Large-scale Synthesis of Uniform Silver Nanowires through a Soft, Self-seeding, Polyol Process[J]. Adv. Mater., 2002, 14: 833–837

    Article  CAS  Google Scholar 

  17. J Chen, T Herricks, M Geissler, et al. Single-crystal Nanowires of Platinum Can be Synthesized by Controlling the Reaction Rate of a Polyol Process[J]. J. Am. Chem. Soc., 2004, 126: 10 854–10 855

    CAS  Google Scholar 

  18. Y Sun, B Gates, B Mayers, et al. Crystalline Silver Nanowires by Soft Solution Processing[J]. Nano Lett., 2002, 2: 165–168

    Article  MATH  CAS  Google Scholar 

  19. D Jezequel, J Guenot, N Jouini, et al. Submicrometer Zinc Oxide Particles: Elaboration in Polyol Medium and Morphological Characteristics[J]. J. Mater. Res., 1995, 10: 77–83

    Article  ADS  CAS  Google Scholar 

  20. W J Li, E W Shi, W Z Zhong, et al. Growth Mechanism and Growth Habit of Oxide Crystals[J]. J. Cryst. Growth, 1999, 203: 186–196

    Article  CAS  Google Scholar 

  21. V Srikant, D R Clarke. On the Optical Band Gap of Zinc Oxide[J]. J. Appl. Phys., 1998, 83: 5 447–5 451

    CAS  Google Scholar 

  22. E M Wong, J E Bonevich, P C Searson. Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions[ J]. J. Phys. Chem. B, 1998, 102: 7 770–7 775

    Article  CAS  Google Scholar 

  23. L Brus. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory[J]. J. Phys. Chem., 1986, 90:2 555–2 560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang  (汪汪).

Additional information

Funded by the National Natural Science Foundation of China (No. 50572039), the Postdoctoral Foundation of China (No. 20060390284) and Jiangsu Planned Projects for Postdoctoral Research Funds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Liu, H., Liu, X. et al. A convenient method for preparing shape-controlled ZnO nanocrystals in a polyol/water mixture system without surfactants. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 24, 30–33 (2009). https://doi.org/10.1007/s11595-009-1030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-009-1030-y

Key words

Navigation