Skip to main content
Log in

Floating boundary particle swarm optimization algorithm

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A new modification to the particle swarm optimization (PSO) algorithm is proposed aiming to make the algorithm less sensitive to selection of the initial search domain. To achieve this goal, we release the boundaries of the search domain and enable each boundary to drift independently, guided by the number of collisions with particles involved in the optimization process. The gradual modification of the active search domain range enables us to prevent particles from revisiting less promising regions of the search domain and also to explore the areas located outside the initial search domain. With time, the search domain shrinks around a region holding a global extremum. This helps improve the quality of the final solution obtained. It also makes the algorithm less sensitive to initial choice of the search domain ranges. The effectiveness of the proposed Floating Boundary PSO (FBPSO) is demonstrated using a set of standard test functions. To control the performance of the algorithm, new parameters are introduced. Their optimal values are determined through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eberhart, R.C., Shi Y.: Particle swarm optimization: developments, applications and resources. In: Proc. Congr. Evolutionary Computation. vol. 1, pp. 81–86 (2001)

  2. Parsopoulos K.E., Vrahatis M.N.: Recent approaches to global optimization problems through Particle Swarm Optimization. Nat. Comput. 1, 235–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clerc M., Kennedy J.: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  4. Schutte J.F., Groenwold A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31, 93–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu S., Rahmat-Samii Y.: Boundary conditions in particle swarm optimization: revisited. IEEE Trans. Antennas Propag. 55(3), 760–765 (2007)

    Article  Google Scholar 

  6. Hoorfar A.: Evolutionary programming in electromagnetic optimization: a review. IEEE Trans. Antennas Propag. 55(3), 523–537 (2007)

    Article  Google Scholar 

  7. Robinson J., Rahmat-Samii Y.: Particle swarm optimization in electromagnetic. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)

    Article  MathSciNet  Google Scholar 

  8. Boriskin A.V., Sauleau R.: Numerical investigation into the design of shaped dielectric lens antennas with improved angular characteristics. Prog. Electromagn. Res. B 30, 279–292 (2011)

    Google Scholar 

  9. Rolland A., Ettorre M., Boriskin A.V., Le Coq L., Sauleau R.: Axisymmetric resonant lens antenna with improved directivity in Ka-band. IEEE Antennas Wirel. Propag. Lett. 10(1), 37–40 (2011)

    Article  Google Scholar 

  10. Rolland A., Boriskin A.V., Person C., Quendo C., Le Coq L., Sauleau R.: Lens-corrected axis-symmetrical shaped horn antenna in metallized foam with improved bandwidth. IEEE Antennas Wirel. Propag. Lett. 11(1), 57–60 (2012)

    Article  Google Scholar 

  11. Zhan, Z., Xiao, J., Zhang, J., Chen, W.: Adapting control of acceleration coefficients for particle swarm optimization based on clustering analysis. In: Proc. Congr. Evolutionary Computation, pp. 3276–3282 (2007)

  12. Li, C., Yang, S.: An adaptive learning particle swarm optimizer for function optimization. In: Proc. Congr. Evolutionary Computation, pp. 381–388 (2009)

  13. Kitayama S., Yamazaki K., Arakawa M.: Adaptive range particle swarm optimization. Optim. Eng. 10, 575–597 (2009)

    Article  MathSciNet  Google Scholar 

  14. Galan, A.Yu., Boryskina, O.P., Sauleau, R., Boriskin, A.V.: Particle swarm optimization algorithm with moving boundaries as a powerful tool for exploration research. In: Proc. 5th Eur. Conf. Antennas Propag. (EuCAP), Rome (Italy), pp. 2081–2084 (2011)

  15. Huang T., Mohan A.S.: A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wirel. Propag. Lett. 4, 112–117 (2005)

    Article  Google Scholar 

  16. Galan A.Yu., Sauleau R., Boriskin A.V.: Parameter selection in particle swarm optimization algorithm for synthesis of linear arrays with flat-top beams. J. Telecommun. Radio Eng. 70(16), 1415–1428 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem V. Boriskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galan, A.Y., Sauleau, R. & Boriskin, A.V. Floating boundary particle swarm optimization algorithm. Optim Lett 7, 1261–1280 (2013). https://doi.org/10.1007/s11590-012-0502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0502-8

Keywords

Navigation