Skip to main content

Advertisement

Log in

Optimizing carrier concentration for enhanced thermoelectric performance in AgSbS2 monolayer

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This work investigates the structural, electronic, elastic, and transport properties of the AgSbS2 monolayer, using density functional theory in conjunction with semiclassical Boltzmann transport theory. In this study, we proposed a strategy to enhance the figure of merit (ZT) by optimizing the carrier concentrations. The monolayer of AgSbS2 is found to be both mechanically and thermodynamically stable. The phonon bandstructure and ab-initio molecular dynamics are also used to verify its excellent dynamical and thermal stability. The calculated electronic bandstructure shows a semiconducting nature of AgSbS2 with an indirect band gap of 1.31 eV using the Heyd-Scuderia-Ernzerhof (HSE06) exchange–correlation functional. The investigated monolayer is found to be anisotropic, hence we analyzed its thermoelectric properties at various carrier concentrations along a– and b–directions at 300 K. It attained a high value of Seebeck coefficient of 360 μVK−1 and 370 μVK−1 in the a– and b– directions at room temperature, respectively. The low thermal conductivity and high power factor result in an appreciable ZT value. The maximum ZT of AgSbS2 monolayer at an optimized carrier concentration of 2 × 1019 cm−3 is found to be 0.54 in the b-direction for the n-type monolayer at 300 K. The present work supports the potential use of AgSbS2 in room-temperature energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Mori T, Priya S (2018) Materials for energy harvesting: At the forefront of a new wave. MRS Bull 43:176–180. https://doi.org/10.1557/mrs.2018.32

    Article  Google Scholar 

  2. Zareef F, Rashid M, Ahmadini AAH, Alshahrani T, Kattan NA, Laref A (2021) Optoelectronic and thermoelectrical and mechanical properties of CdLu2X4 (X = S, Se) using first-principles calculations for energy harvesting applications. Mater Sci Semicond Process 127:105695. https://doi.org/10.1016/j.mssp.2021.105695

    Article  CAS  Google Scholar 

  3. Roknuzzaman M, Ostrikov K, Wang H, Du A, Tesfamichael T (2017) Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci Rep 7:14025. https://doi.org/10.1038/s41598-017-13172-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan G, Ohta M, Kanatzidis MG (2019) Thermoelectric power generation: from new materials to devices. Philos Trans R Soc Math Phys Eng Sci 377:20180450. https://doi.org/10.1098/rsta.2018.0450

    Article  CAS  Google Scholar 

  5. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461. https://doi.org/10.1126/science.1158899

    Article  CAS  PubMed  Google Scholar 

  6. Pei Y, LaLonde AD, Heinz NA, Shi X, Iwanaga S, Wang H, Chen L, Snyder GJ (2011) Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv Mater 23:5674–5678. https://doi.org/10.1002/adma.201103153

    Article  CAS  PubMed  Google Scholar 

  7. Sangeeta, Singh M (2023) Augmented thermoelectric performance of LiCaX (X = As, Sb) Half Heusler compounds via carrier concentration optimization. J Phys Chem Solids 174:111182. https://doi.org/10.1016/j.jpcs.2022.111182

  8. Kumar R, Kumar R, Vij A, Singh M (2022) A first-principle study of electronic, thermoelectric, and optical properties of sulfur doped c-HfO2. Phys Scr 97:075813. https://doi.org/10.1088/1402-4896/ac7678

    Article  CAS  Google Scholar 

  9. Mehdizadeh Dehkordi A, Zebarjadi M, He J, Tritt TM (2015) Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater Sci Eng R Rep 97:1–22. https://doi.org/10.1016/j.mser.2015.08.001

    Article  Google Scholar 

  10. Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, Yang J, Zhang W, Uher C, Singh DJ (2016) On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. Npj Comput Mater 2:15015. https://doi.org/10.1038/npjcompumats.2015.15

    Article  CAS  Google Scholar 

  11. Kumar R, Kumar R, Singh M, Meena D, Vij A (2022) Carrier concentration mediated enhancement in thermoelectric performance of various polymorphs of hafnium oxide: a plausible material for high temperature thermoelectric energy harvesting application. J Phys Appl Phys 55:495302. https://doi.org/10.1088/1361-6463/ac9986

    Article  CAS  Google Scholar 

  12. Sangeeta, Kumar R, Kumar R, Singh M (2023) Unravelling the ultralow thermal conductivity of ternary antimonide zintl phase RbGaSb2: a first-principles study. Indian J Pure Appl Phys 61:731–734. https://doi.org/10.56042/ijpap.v61i9.3152

  13. Kashyap MK, Singla R (2021) Beyond 3D-traditional materials thermoelectric materials, in: Thermoelectr. Adv. Thermoelectr. Mater., Elsevier, pp. 163–193

  14. Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, Li Y, Zhang H, Xie H (2020) Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett 12:36. https://doi.org/10.1007/s40820-020-0374-x

    Article  CAS  Google Scholar 

  15. Xiang J, Dai B, Zhang X-W, Guo H-Z, Cheng W-L, Ge N-N (2022) High thermoelectric performance of intrinsic few-layers T-HfSe2. Mater Today Commun 33:104789. https://doi.org/10.1016/j.mtcomm.2022.104789

    Article  CAS  Google Scholar 

  16. Xiang J, Wang H, Dai B, Cheng W-L, Zhang X-W, Wang Z-G, Ge N-N (2022) Optimizing the thermoelectric transmission of monolayer HfSe2 by strain engineering. J Phys Chem Solids 169:110834. https://doi.org/10.1016/j.jpcs.2022.110834

    Article  CAS  Google Scholar 

  17. Hoang K, Mahanti SD, Salvador JR, Kanatzidis MG (2007) Atomic ordering and gap formation in Ag-Sb-based ternary chalcogenides. Phys Rev Lett 99:156403. https://doi.org/10.1103/PhysRevLett.99.156403

    Article  CAS  PubMed  Google Scholar 

  18. Detemple R, Wamwangi D, Wuttig M, Bihlmayer G (2003) Identification of Te alloys with suitable phase change characteristics. Appl Phys Lett 83:2572–2574. https://doi.org/10.1063/1.1608482

    Article  CAS  Google Scholar 

  19. Zhu M, Shi X-L, Wu H, Liu Q, Chen Z-G (2023) Advances in Ag2S-based thermoelectrics for wearable electronics: Progress and perspective. Chem Eng J 475:146194. https://doi.org/10.1016/j.cej.2023.146194

    Article  CAS  Google Scholar 

  20. Lin S, Li W, Zhang X, Li J, Chen Z, Pei Y (2017) Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorg Chem Front 4:1066–1072. https://doi.org/10.1039/C7QI00138J

    Article  CAS  Google Scholar 

  21. Chen T, Zhang K, Wang H, Su W, Mehmood F, Wang T, Zhai J, Wang X, Huo T, Wang C (2020) The high thermoelectric performance of slightly Sb doped PbTe alloys. J Mater Chem C 8:1679–1685. https://doi.org/10.1039/C9TC06124J

    Article  CAS  Google Scholar 

  22. Liu X-C, Wang Y-M, Qi M-L, Pan M-Y (2020) Enhanced thermoelectric properties in Ag-rich AgSbSe2. J Solid State Chem 288:121454. https://doi.org/10.1016/j.jssc.2020.121454

    Article  CAS  Google Scholar 

  23. Fang W, Chen Y, Kuang K, Li M (2022) Excellent Thermoelectric Performance of 2D CuMN2 (M = Sb, Bi; N = S, Se) at Room Temperature. Materials 15:6700. https://doi.org/10.3390/ma15196700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang Z, Zhang Y, Wu H, Pennycook SJ, Zhao L-D (2019) Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. ACS Appl Energy Mater 2:8236–8243. https://doi.org/10.1021/acsaem.9b01708

    Article  CAS  Google Scholar 

  25. Lee SW, Kim T, Kim H-S, Park O, Kim DH, Kim S (2022) Enhanced thermoelectric properties of InSe through simultaneous increase in electrical conductivity and Seebeck coefficient by Cl doping. J Mater Res Technol 19:2077–2083. https://doi.org/10.1016/j.jmrt.2022.05.180

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  27. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  29. Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121:1187–1192. https://doi.org/10.1063/1.1760074

    Article  CAS  PubMed  Google Scholar 

  30. Ganose AM, Park J, Faghaninia A, Woods-Robinson R, Persson KA, Jain A (2021) Efficient calculation of carrier scattering rates from first principles. Nat Commun 12:2222. https://doi.org/10.1038/s41467-021-22440-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamura K, Higuchi S, Ohnuma T (2018) Density Functional Perturbation Theory to Predict Piezoelectric Properties, in: İ. Bakırtaş (Ed.), Perturbation Methods Appl. Sci. Eng., InTech, https://doi.org/10.5772/intechopen.76827

  32. Togo A, Chaput L, Tanaka I (2015) Distributions of phonon lifetimes in Brillouin zones. Phys Rev B 91:094306. https://doi.org/10.1103/PhysRevB.91.094306

    Article  CAS  Google Scholar 

  33. Mushtaq M, Sattar MA, Dar SA (2020) Phonon phase stability, structural, mechanical, electronic, and thermoelectric properties of two new semiconducting quaternary Heusler alloys CoCuZrZ (Z = Ge and Sn). Int J Energy Res 44:5936–5946. https://doi.org/10.1002/er.5373

    Article  CAS  Google Scholar 

  34. Born M, Huang K, Lax M (1955) Dynamical Theory of Crystal Lattices. Am J Phys 23:474–474. https://doi.org/10.1119/1.1934059

    Article  Google Scholar 

  35. Hill R (1952) The Elastic Behaviour of a Crystalline Aggregate. Proc Phys Soc Sect A 65:349–354. https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  36. Parvin F, Hossain MA, Ahmed I, Akter K, Islam AKMA (2021) First-principles calculations to investigate mechanical, optoelectronic and thermoelectric properties of half-Heusler p-type semiconductor BaAgP. Results Phys 23:104068. https://doi.org/10.1016/j.rinp.2021.104068

    Article  Google Scholar 

  37. Fu H, Li D, Peng F, Gao T, Cheng X (2008) Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput Mater Sci 44:774–778. https://doi.org/10.1016/j.commatsci.2008.05.026

    Article  CAS  Google Scholar 

  38. Zhang JJ (2019) Rock physical and mechanical properties, in: Appl. Pet. Geomech., Elsevier, pp. 29–83. https://doi.org/10.1016/B978-0-12-814814-3.00002-2

  39. Poplavko YM (2019) Mechanical properties of solids, in: Electron. Mater., Elsevier, pp. 71–93. https://doi.org/10.1016/B978-0-12-815780-0.00002-5

  40. Anderson OL (1963) A simplified method for calculating the debye temperature from elastic constants. J Phys Chem Solids 24:909–917. https://doi.org/10.1016/0022-3697(63)90067-2

    Article  CAS  Google Scholar 

  41. Chen Z-Y, Xiong M, Zeng Z-Y, Chen X-R, Chen Q-F (2021) Comparative study of elastic, thermodynamic properties and carrier mobility of InX (X = O, S, Se, Te) monolayers via first-principles. Solid State Commun 326:114163. https://doi.org/10.1016/j.ssc.2020.114163

    Article  CAS  Google Scholar 

  42. Sangeeta M (2024) Singh, Computational study of the thermoelectric properties and lattice dynamics of Li2MN2 (M = Zr or Hf). Mater Res Bull 172:112650. https://doi.org/10.1016/j.materresbull.2023.112650

    Article  CAS  Google Scholar 

  43. Song X, Wang G, Zhou L, Yang H, Li X, Yang H, Shen Y, Xu G, Luo Y, Wang N (2023) Oxide Perovskite BaSnO3: A Promising High-Temperature Thermoelectric Material for Transparent Conducting Oxides. ACS Appl Energy Mater 6:9756–9763. https://doi.org/10.1021/acsaem.3c01870

    Article  CAS  Google Scholar 

  44. Song X, Chen X, Wang G, Zhou L, Yang H, Li X, Yang H, Shen Y, Luo Y, Wang N (2023) Strong anisotropy of Sc 2X2Se2 (X = Cl, Br, I) monolayers contributes to high thermoelectric performance. Phys Chem Chem Phys 25:24332–24341. https://doi.org/10.1039/D3CP02755D

    Article  CAS  PubMed  Google Scholar 

  45. Song X, Wang G, Gan S, Yang H, Li X, Shen Y, Luo Y, Wang N (2024) Triaxial strain enhanced thermoelectric performance and conversion efficiency in Tl3TaSe4. J Alloys Compd 1004:175896. https://doi.org/10.1016/j.jallcom.2024.175896

    Article  CAS  Google Scholar 

  46. Hien ND, Cuong NQ, Bui LM, Dinh PC, Nguyen CV, Phuc HV, Hieu NV, Jappor HR, Phuong LTT, Hoi BD, Nhan LC, Hieu NN (2019) First principles study of single-layer SnSe2 under biaxial strain and electric field: Modulation of electronic properties. Phys E Low-Dimens Syst Nanostruct 111:201–205. https://doi.org/10.1016/j.physe.2019.03.025

    Article  CAS  Google Scholar 

  47. Yan P, Gao G, Ding G, Qin D (2019) Bilayer MSe2 (M = Zr, Hf) as promising two-dimensional thermoelectric materials: a first-principles study. RSC Adv 9:12394–12403. https://doi.org/10.1039/C9RA00586B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Natarajan AR, Ponvijayakanthan L, Gupta MK, Mittal R, Singh DJ, Kanchana V (2023) High thermoelectric performance of layered LaAgXO ( X = Se, Te ) from electrical and thermal transport calculations. Phys Rev Mater 7:025405. https://doi.org/10.1103/PhysRevMaterials.7.025405

    Article  CAS  Google Scholar 

  49. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science 321:554–557. https://doi.org/10.1126/science.1159725

    Article  CAS  PubMed  Google Scholar 

  50. Cutler M, Mott NF (1969) Observation of Anderson Localization in an Electron Gas. Phys Rev 181:1336–1340. https://doi.org/10.1103/PhysRev.181.1336

    Article  CAS  Google Scholar 

  51. Gandi AN, Schwingenschlögl U (2014) WS2 As an Excellent High-Temperature Thermoelectric Material. Chem Mater 26:6628–6637. https://doi.org/10.1021/cm503487n

    Article  CAS  Google Scholar 

  52. Anisha R, Kumar S, Srivastava K (2023) Tankeshwar, Thermoelectric properties of PtX2 (X = Se, Te) monolayers. Indian J Phys. https://doi.org/10.1007/s12648-023-02727-7

    Article  Google Scholar 

  53. Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131–6140. https://doi.org/10.1103/PhysRevB.46.6131

    Article  CAS  Google Scholar 

  54. Sangeeta R, Kumar M (2022) Singh, Realizing high thermoelectric performance in p-type RbZn4P3 Zintl compound: a first-principles investigation. J Mater Sci 57:10691–10701. https://doi.org/10.1007/s10853-022-06953-y

    Article  CAS  Google Scholar 

  55. Tan G, Shi F, Hao S, Zhao L-D, Chi H, Zhang X, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2016) Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat Commun 7:12167. https://doi.org/10.1038/ncomms12167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo S-D, Zhang A-X (2017) Potential 2D thermoelectric materials ATeI (A=Sb and Bi) monolayers from a first-principles study. Nanotechnology 28:445702. https://doi.org/10.1088/1361-6528/aa8741

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to RAFM-2024 for providing this platform for submission. The authors would like to thank Delhi Technological University, Delhi for providing computational facility. Some part of the computational work has been carried out by using the resources of the National PARAM Supercomputing Facility (NPSF) at the Center for Development of Advanced Computing (C-DAC) Pune, which is an Autonomous Society of Ministry of Electronics and Information Technology (MeitY), Govt. of India. MKK is grateful to Ultra International India Pvt. Ltd., Ghaziabad, India for providing the lab furniture for Renewable Energy Laboratory at SPS, JNU.

Funding

There was no Funding available for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.S.M. and S. performed Investigation and wrote the main manuscript text. R.K. prepared Figs. 1, 2, 3, 4, 5, 6 and 7. M.S. and M.K.K. reviewed and edited the manuscript text.

Corresponding authors

Correspondence to Mukhtiyar Singh or Manish K. Kashyap.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, S.S., Sangeeta, Kumar, R. et al. Optimizing carrier concentration for enhanced thermoelectric performance in AgSbS2 monolayer. Ionics 30, 8647–8657 (2024). https://doi.org/10.1007/s11581-024-05844-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05844-3

Keywords