Skip to main content

Advertisement

Log in

Bioinspired Bi2O3-ZrO2 nanocomposite heterojunction as energy storage material and high-performance electrocatalyst for water oxidation

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Phyto-mediated nanocomposite materials possess significant potential in morphological control as well as in electrocatalytic activity, which is the main reason for steered interest in the design of new materials for their applications in water splitting. In this work, nanocomposites of Bi2O3-ZrO2 have been prepared by using Amaranthus viridis L. (AVL)–based aqueous extract as a reducing agent. The synthesized nanomaterial’s composition and charge storage properties have been examined in detail. A crystalline structure for the synthesized Bi2O3-ZrO2-based nanocomposite has been elucidated by XRD analysis, while analysis through FTIR, UV, and SEM along with EDX also confirmed the successful biogenic synthesis of the desired nanocomposite. The synthesized biocomposite material is further applied on the nickel foam to be utilized in supercapacitor applications as a working electrode. Results manifest an exceptional specific capacitance value of 283.9 F/g at 2 mV/s by the AVL-Bi2O3-ZrO2 electrode. The columbic efficiency of the electrode was determined to be 99% even after 5000 GCD cycles. The synthesized Bi2O3-ZrO2 nanocomposite is considered to be an efficient electrocatalyst with a comparatively lower band gap of 2.7 eV. This lower bandgap further manifests its potential role in environmental remediation processes through photocatalysis. Additionally, the Bi2O3-ZrO2 composite has also been tested for cyclic stability through chronoamperometry showing reasonable stability. The Ragone plot has been used to determine the power density and energy density as 12 WhKg−1 and 3 KWKg−1 manifesting the higher capacitive behavior of nanocomposite. The synthesized bio-based nanocomposite has a good potential as an electrocatalyst for water splitting having highest productivity of the electrode up to 16.5 h as displayed by hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). To the best of our knowledge, this study represents the first account on the green synthesis of Bi2O3-ZrO2 nanocomposites, wherein Amaranthus viridis L. (AVL) serves as the eco-friendly source, in combination with Bi2O3, which has reduced toxicity, and ZrO2, renowned for its exceptional stability. Our investigation further highlights the importance of synthesis of materials through phytoextract-assisted route for utilization in overall water splitting and energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request to the corresponding author.

References

  1. Armeanu DS, Joldes CC, Gherghina SC, Andrei JV (2021) Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: quantitative assessments across different income countries’ groups. Renew Sustain Energy Rev 142:110818. https://doi.org/10.1016/j.rser.2021.110818

    Article  CAS  Google Scholar 

  2. Pratheepa MI, Lawrence M (2020) Eco-friendly approach in supercapacitor application: CuZnCdO nanosphere decorated in reduced graphene oxide nanosheets. SN Appl Sci 2:1–12. https://doi.org/10.1007/s42452-020-2123-7

    Article  CAS  Google Scholar 

  3. Vivek C, Balraj B, Thangavel S (2020) Electrical energy storage capability of flake-like/spherical structured CuO–Ag nanocomposite synthesized by green plasmonic approach. J Electron Mater 49:1075–1080. https://doi.org/10.1007/s11664-019-07834-y

    Article  ADS  CAS  Google Scholar 

  4. Kumar M, Meena B, Subramanyam P et al (2022) Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Mater 14.https://doi.org/10.1038/s41427-022-00436-x

  5. Wang J, Cui W, Liu Q et al (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28:215–230. https://doi.org/10.1002/adma.201502696

    Article  CAS  PubMed  Google Scholar 

  6. Siavash Moakhar R, Hosseini-Hosseinabad SM, Masudy-Panah S et al (2021) Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Adv Mater 33. https://doi.org/10.1002/adma.202007285

  7. Subramanyam PBM, Vasudevanpillai B, Misawa H, Subrahmanyam C (2022) Emerging materials for plasmon-assisted photoelectrochemical water splitting. J Photochem Photobiol C Photochem Rev 51:10072

  8. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C Photochem Rev 11:179–209

    Article  Google Scholar 

  9. Jia G, Liu L, Zhang L et al (2018) 1D alignment of ZnO@ZIF-8/67 nanorod arrays for visible-light-driven photoelectrochemical water splitting. Appl Surf Sci 448:254–260. https://doi.org/10.1016/j.apsusc.2018.04.102

    Article  ADS  CAS  Google Scholar 

  10. Nie M, Sun H, Tian XH et al (2020) Preparation of PtAuFe/C composite catalyst and performance for hydrogen evolution reaction. Electrochem commun 116:106765. https://doi.org/10.1016/j.elecom.2020.106765

    Article  CAS  Google Scholar 

  11. Chaves A, Azadani JG, Alsalman H et al (2020) Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl 4. https://doi.org/10.1038/s41699-020-00162-4

  12. Tay YF, Kaneko H, Chiam SY et al (2018) Solution-processed Cd-substituted CZTS Photocathode for efficient solar hydrogen evolution from neutral water. Joule 2:537–548. https://doi.org/10.1016/j.joule.2018.01.012

    Article  CAS  Google Scholar 

  13. Kwon KC, Choi S, Hong K et al (2016) Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ Sci 9:2240–2248. https://doi.org/10.1039/c6ee00144k

    Article  CAS  Google Scholar 

  14. Meena B, Kumar M, Gupta S et al (2022) Rational design of TiO2/BiSbS3 heterojunction for efficient solar water splitting. Sustain Energy Technol Assessments 49:101775

    Article  Google Scholar 

  15. Kumar M, Ghosh CC, Meena B et al (2022) Plasmonic Au nanoparticle sandwiched CuBi2O4/Sb2S3 photocathode with multi-mediated electron transfer for efficient solar water splitting. Sustain Energy Fuels 6:3961–3974

    Article  CAS  Google Scholar 

  16. Subramanyam P, Meena B, Suryakala D et al (2021) Plasmonic nanometal decorated photoanodes for efficient photoelectrochemical water splitting. Catal Today 379:1–6. https://doi.org/10.1016/j.cattod.2020.01.041

    Article  CAS  Google Scholar 

  17. Chen D, Liu Z (2018) Efficient indium sulfide photoelectrode with crystal phase and morphology control for high-performance photoelectrochemical water splitting. ACS Sustain Chem Eng 6:12328–12336. https://doi.org/10.1021/acssuschemeng.8b02801

    Article  CAS  Google Scholar 

  18. Jun SE, Hong SP, Choi S et al (2021) Boosting unassisted alkaline solar water splitting using silicon photocathode with TiO2 nanorods decorated by edge-rich MoS2 nanoplates. Small 17:1–10. https://doi.org/10.1002/smll.202103457

    Article  CAS  Google Scholar 

  19. Wang S, Chen P, Yun J-H et al (2017) An electrochemically treated BiVO 4 photoanode for efficient photoelectrochemical water splitting. Angew Chemie 129:8620–8624. https://doi.org/10.1002/ange.201703491

    Article  ADS  Google Scholar 

  20. Bukhary HA, Zaman U, urRehman K et al (2023) Acid protease functionalized novel silver nanoparticles (APTs-AgNPs): a new approach towards photocatalytic and biological applications. Int J Biol Macromol 242:124809. https://doi.org/10.1016/j.ijbiomac.2023.124809

    Article  CAS  PubMed  Google Scholar 

  21. urRehman K, Ullah Khan A, Tahir K et al (2022) Facile synthesis of copper oxide nanoparticles (CuONPs) using green method to promote photocatalytic and biocidal applications. J Mol Liq 360:119453. https://doi.org/10.1016/j.molliq.2022.119453

    Article  CAS  Google Scholar 

  22. Mo Z, Zhou J, Lu X et al (2023) Flexible nanocomposite electrodes with optimized hybrid structure for improved low-grade heat harvest via thermocells. Sci China Chem 66:1814–1823. https://doi.org/10.1007/s11426-023-1567-0

    Article  CAS  Google Scholar 

  23. Sebastian J, Jhancy Mary S (2022) Structural, thermal and electrochemical behavior of poly(2-ethylaniline)-nanocomposite-Fe2O3 and poly(2-ethylaniline)-nanocomposite-SiO2 for antibacterial and antioxidant studies. Polym Sci - Ser B 64:340–353. https://doi.org/10.1134/S1560090422200040

    Article  Google Scholar 

  24. Dou Z, Bini Farias MV, Chen W et al (2023) Highly degradable chitosan-montmorillonite (MMT) nano-composite hydrogel for controlled fertilizer release. Front Environ Sci Eng 17:11783. https://doi.org/10.1007/s11783-023-1653-9

    Article  CAS  Google Scholar 

  25. Nivethaa EAK, Dhanavel S, Narayanan V, Stephen A (2016) Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards MCF-7. Polym Bull 73:3221–3236. https://doi.org/10.1007/s00289-016-1651-1

    Article  CAS  Google Scholar 

  26. Zhi J, Wang J, Shen Z et al (2023) Nanofiber-reinforced polymer nanocomposite with hierarchical interfaces for high-temperature dielectric energy storage applications. Sci China Mater 1–10. https://doi.org/10.1007/s40843-022-2412-2

  27. Akbari M, Etemadi A, Firoozeh F, Yaseliani M (2017) Erratum to: Synthesis of AgO–TiO2 nanocomposite through a simple method and its antibacterial activities (Journal of Materials Science: Materials in Electronics, (2017), 28, 14, (10245–10249), https://doi.org/10.1007/s10854-017-6791-z). J Mater Sci Mater Electron 28:11562. https://doi.org/10.1007/s10854-017-7102-4

  28. Rehman KU, Khan SU, Tahir K et al (2022) Sustainable and green synthesis of novel acid phosphatase mediated platinum nanoparticles (ACP-PtNPs) and investigation of its in vitro antibacterial, antioxidant, hemolysis and photocatalytic activities. J Environ Chem Eng 10:107623. https://doi.org/10.1016/j.jece.2022.107623

    Article  CAS  Google Scholar 

  29. urRehman K, Zaman U, Tahir K et al (2022) A Coronopus didymus based eco-benign synthesis of titanium dioxide nanoparticles (TiO2 NPs) with enhanced photocatalytic and biomedical applications. Inorg Chem Commun 137:109179. https://doi.org/10.1016/j.inoche.2021.109179

    Article  CAS  Google Scholar 

  30. Alkhalidi HM, Zaman U, Khan D et al (2023) Microwave assisted eco-benign synthesis of novel palladium nanoparticles (ACPs-PdNPs): a new insight into photocatalytic and biomedical applications. J Mol Liq 392:123469. https://doi.org/10.1016/j.molliq.2023.123469

    Article  CAS  Google Scholar 

  31. Rehman K ur, Zaman U, Khan D, Khan WU (2022) Surfactant assisted CuO/MCM-41 nanocomposite: ultra efficient photocatalyst for degradation of methylene blue dye and inactivation of highly drug resistant bacteria. Mater Chem Phys 277:125454. https://doi.org/10.1016/j.matchemphys.2021.125454

    Article  CAS  Google Scholar 

  32. urRehman K, Tahir K, AL-Abdulkarim HA et al (2021) Photoinhibition and photocatalytic response of surfactant mediated Pt/ZnO nanocomposite. Photodiagnosis Photodyn Ther 35:102458. https://doi.org/10.1016/j.pdpdt.2021.102458

    Article  CAS  Google Scholar 

  33. Gul R, Naqib S, Saleh EAM et al (2023) An eco-benign biomimetic approach for the synthesis of novel silver nanoparticles (Kt-AgNPs): ultra efficient nanoparticles with enhanced biomedical applications. Inorg Chem Commun 155:111109. https://doi.org/10.1016/j.inoche.2023.111109

    Article  CAS  Google Scholar 

  34. Ren Y, Li H, Gao S et al (2023) Ag-doped Ag3PO4/Bi2SiO5 nanocomposite: controlled synthesis and good photocatalytic activity of a new ternary nanocomposite based on plasmon resonance effect. Appl Phys A Mater Sci Process 129.https://doi.org/10.1007/s00339-023-06714-x

  35. Ning W, Li Y, Fang Y et al (2023) Characterization and photocatalytic activity of CoCr2O4/g-C3N4 nanocomposite for water treatment. Environ SciPollut Res 2. https://doi.org/10.1007/s11356-023-27807-3

  36. Han Q, Cui S, Pu N et al (2010) A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium. Int J Hydrogen Energy 35:5194–5201. https://doi.org/10.1016/j.ijhydene.2010.03.093

    Article  CAS  Google Scholar 

  37. Raghavendra KVG, Sreekanth TVM, Ko TJ et al (2021) Facile hydrothermal synthesis of novel ZnWO4/ZnCo2O4 electrode for high-performance supercapacitors. Mater Lett 287:2–6. https://doi.org/10.1016/j.matlet.2020.129296

    Article  CAS  Google Scholar 

  38. Honda H, Takamatsu H, Wei JJ (1972) Electrochemical photolysis of water at a semiconductor electrode. Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions Japan Soc Mech Eng Part B 68:2327–2332

    Google Scholar 

  39. Monny SA, Wang Z, Konarova M, Wang L (2021) Bismuth based photoelectrodes for solar water splitting. J Energy Chem 61:517–530. https://doi.org/10.1016/j.jechem.2021.01.047

    Article  CAS  Google Scholar 

  40. Peerakiatkhajohn P, Butburee T, Yun JH et al (2015) A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting. J Mater Chem A 3:20127–20133. https://doi.org/10.1039/c5ta04137f

    Article  CAS  Google Scholar 

  41. Al-Saeedi SI (2023) Photoelectrochemical green hydrogen production utilizing ZnO nanostructured photoelectrodes. Micromachines 14.https://doi.org/10.3390/mi14051047

  42. Bibi S, Shahzad K, Abrahams I, Almanqur L (2023) Multifunctional n-type [Sm3+-Eu3+-Tm3+] - doped SnO2 semiconductor system steered electrochemical and photovoltaic efficiency enhancement in energy applications. J Taiwan Inst Chem Eng 149:104992. https://doi.org/10.1016/j.jtice.2023.104992

    Article  CAS  Google Scholar 

  43. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  44. Wang Y, Tian W, Chen C et al (2019) Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation. Adv Funct Mater 29:1–25. https://doi.org/10.1002/adfm.201809036

    Article  ADS  CAS  Google Scholar 

  45. Ji H, Shao S, Yuan G et al (2021) Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes. J Energy Chem 52:147–154. https://doi.org/10.1016/j.jechem.2020.04.024

    Article  CAS  Google Scholar 

  46. Balaji GG, Shinde NMYTN, Jang J-H, Mane RS (2022) Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application. Colloids Surfaces A Physicochem Eng Asp 651:129690

    Article  Google Scholar 

  47. Bhat SSM, Jang HW (2017) Recent advances in bismuth-based nanomaterials for photoelectrochemical water splitting. Chemsuschem 10:3001–3018. https://doi.org/10.1002/cssc.201700633

    Article  CAS  PubMed  Google Scholar 

  48. Ramadurgam S, Lin TG, Yang C (2014) Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells. Nano Lett 14:4517–4522. https://doi.org/10.1021/nl501541s

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Andleeb S, Imtiaz-ud-Din RMK et al (2022) Structural manifestations and biological screening for newly synthesized heteroleptic bismuth(V) bis-carboxylates. J Coord Chem 74:3002–3017. https://doi.org/10.1080/00958972.2021.2011250

    Article  CAS  Google Scholar 

  50. Andleeb S, Donaldson SL, Schipper DE et al (2017) Anionic bismuth oxido clusters with pendant silver cations: synthesis and structures of [Bi4(µ3-O)2(TFA)9Ag(tol)2]2 and {Bi4(µ3-O)2(TFA)10(AgPPh3)2}n. Eur J Inorg Chem 2017:1457–1463. https://doi.org/10.1002/ejic.201601430

    Article  CAS  Google Scholar 

  51. Andleeb S, Imtiaz-ud-Din RMK et al (2019) Bioactive heteroleptic bismuth(V) complexes: synthesis, structural analysis and binding pattern validation. Appl Organomet Chem 33:1–13. https://doi.org/10.1002/aoc.5061

    Article  CAS  Google Scholar 

  52. Andleeb S, Imtiaz-ud-Din (2019) Recent progress in designing the synthetic strategies for bismuth based complexes. J Organomet Chem 898:120871. https://doi.org/10.1016/j.jorganchem.2019.120871

  53. Raheel A, Andleeb S, Ramadan S, Tahir MN (2016) Synthesis and structural characterization of new bioactive ligands and their Bi ( III ) derivatives. Appl Organometal Chem 1–7. https://doi.org/10.1002/aoc.3632

  54. Loera Fernandez II, Donaldson SL, Schipper DE et al (2016) Anionic bismuth-oxido carboxylate clusters with transition metal countercations. Inorg Chem 55:11560–11569. https://doi.org/10.1021/acs.inorgchem.6b02092

    Article  CAS  PubMed  Google Scholar 

  55. Zhang W, Song L, Cen J, Liu M (2019) Mechanistic insights into defect-assisted carrier transport in bismuth vanadate photoanodes. J Phys Chem C 123:20730–20736. https://doi.org/10.1021/acs.jpcc.9b04583

    Article  CAS  Google Scholar 

  56. Hassan NS, Jalil AA (2022) A review on self-modification of zirconium dioxide nanocatalysts with enhanced visible-light-driven photodegradation of organic pollutants. J Hazard Mater 423:126996. https://doi.org/10.1016/j.jhazmat.2021.126996

    Article  CAS  PubMed  Google Scholar 

  57. Wang M, Chen Z, Liu J et al (2022) Advanced high-temperature (RT-1100°C) resistant adhesion technique for joining dissimilar ZrO2 ceramic and TC4 superalloys based on an inorganic/organic hybrid adhesive. Ceram Int 48:3081–3095

    Article  CAS  Google Scholar 

  58. Rambabu K, Bharath G, Arangadi AF et al (2020) ZrO2 incorporated polysulfone anion exchange membranes for fuel cell applications. Int J Hydrogen Energy 45:29668–29680. https://doi.org/10.1016/j.ijhydene.2020.08.175

    Article  CAS  Google Scholar 

  59. Chen F, Wu YR, Wu JM et al (2021) Preparation and characterization of ZrO2-Al2O3 bioceramics by stereolithography technology for dental restorations. Addit Manuf 44:1–8. https://doi.org/10.1016/j.addma.2021.102055

    Article  CAS  Google Scholar 

  60. Jiang X, Nie X, Gong Y et al (2020) A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol. J Catal 383:283–296. https://doi.org/10.1016/j.jcat.2020.01.014

    Article  CAS  Google Scholar 

  61. Van TT, Nguyen DTC, Kumar PS et al (2022) Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ Chem Lett 20:1309–1331. https://doi.org/10.1007/s10311-021-01367-9

    Article  CAS  Google Scholar 

  62. Vivekanandhan S, Venkateswarlu M, Rawls HR et al (2015) Synthesis and characterization of AgNP:ZrO2 functional nanomaterials by leaf extract assisted bioreduction process. Ceram Int 41:3305–3311. https://doi.org/10.1016/j.ceramint.2014.10.111

    Article  CAS  Google Scholar 

  63. Yadav LSR, Ramakrishnappa T, Pereira JR et al (2021) Rubber latex fuel extracted green biogenic Nickel doped ZrO2 nanoparticles and its resistivity. Mater Today Proc 49:681–685. https://doi.org/10.1016/j.matpr.2021.05.171

    Article  CAS  Google Scholar 

  64. Gurushantha K, Anantharaju KS, Sharma SC et al (2016) Bio-mediated Sm doped nano cubic zirconia: photoluminescent, Judd-Ofelt analysis, electrochemical impedance spectroscopy and photocatalytic performance. J Alloys Compd 685:761–773. https://doi.org/10.1016/j.jallcom.2016.06.105

    Article  CAS  Google Scholar 

  65. Maham M, Nasrollahzadeh M, Mohammad Sajadi S (2020) Facile synthesis of Ag/ZrO2 nanocomposite as a recyclable catalyst for the treatment of environmental pollutants. Compos Part B Eng 185:107783. https://doi.org/10.1016/j.compositesb.2020.107783

    Article  CAS  Google Scholar 

  66. Hamad SM, Mahmud SA, Sajadi SM, Omar ZA (2019) Biosynthesis of Cu/ZrO 2 nanocomposite using 7-hydroxy-4´-methoxy-isoflavon extracted from Commelina diffusa and evaluation of its catalytic activity. Surf Interfaces 15:125–134. https://doi.org/10.1016/j.surfin.2019.02.008

    Article  CAS  Google Scholar 

  67. Pandiyan N, Murugesan B, Sonamuthu J et al (2018) Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: enhancement of its bio-medical properties. J Photochem Photobiol B Biol 178:481–488. https://doi.org/10.1016/j.jphotobiol.2017.11.036

    Article  CAS  Google Scholar 

  68. Renuka L, Anantharaju KS, Sharma SC et al (2016) Hollow microspheres Mg-doped ZrO2nanoparticles: green assisted synthesis and applications in photocatalysis and photoluminescence. J Alloys Compd 672:609–622. https://doi.org/10.1016/j.jallcom.2016.02.124

    Article  CAS  Google Scholar 

  69. Ragasa CY, Austria JPM, Subosa AF et al (2015) Chemical constituents of Amaranthus viridis. Chem Nat Compd 51:146–147. https://doi.org/10.1007/s10600-015-1224-9

    Article  CAS  Google Scholar 

  70. Gervas C, Khan MD, Mlowe S et al (2019) Synthesis of off-stoichiometric CoS nanoplates from a molecular precursor for efficient H2/O2 evolution and supercapacitance. ChemElectroChem 6:2560–2569. https://doi.org/10.1002/celc.201900413

    Article  CAS  Google Scholar 

  71. Babu B, Kim J, Yoo K (2022) Nanocomposite of SnO2 quantum dots and Au nanoparticles as a battery-like supercapacitor electrode material. Mater Lett 309:2–5. https://doi.org/10.1016/j.matlet.2021.131339

    Article  CAS  Google Scholar 

  72. Shaheen I, Ahmad KS, Zequine C et al (2020) Organic template-assisted green synthesis of CoMoO 4 nanomaterials for the investigation of energy storage properties †. 8115–8129. https://doi.org/10.1039/c9ra09477f

  73. Zahra T, Ahmad KS (2020) Structural, optical and electrochemical studies of organo-templated wet synthesis of cubic shaped nickel oxide nanoparticles. Optik (Stuttg) 205:164241. https://doi.org/10.1016/j.ijleo.2020.164241

    Article  ADS  CAS  Google Scholar 

  74. Suriyaraj SP, Ramadoss G, Chandraraj K, Selvakumar R (2019) One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mater Sci Eng C Mater Biol Appl 105:110021. https://doi.org/10.1016/j.msec.2019.110021

    Article  CAS  PubMed  Google Scholar 

  75. Rasheed P, Haq S, Waseem M et al (2020) Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Mater Res Express 7.https://doi.org/10.1088/2053-1591/ab6fa2

  76. Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett 10.https://doi.org/10.1186/s11671-015-0780-z

  77. Manohar A, Vijayakanth V, Vattikuti SVP, Kim KH (2023) Structural and electrochemical properties of mixed calcium-zinc spinel ferrites nanoparticles. Ceram Int 49:4365–4371. https://doi.org/10.1016/j.ceramint.2022.09.322

    Article  CAS  Google Scholar 

  78. Kaliaraj GS, Vishwakarma V (2019) Biological and electrochemical behaviour of zirconia modified 316L SS for potential biomedical applications. Mater Today Proc 15:224–228. https://doi.org/10.1016/j.matpr.2019.04.194

    Article  CAS  Google Scholar 

  79. Das PE, Majdalawieh AF, Abu-Yousef IA et al (2020) Use of a hydroalcoholic extract of moringa oleifera leaves for the green synthesis of bismuth nanoparticles and evaluation of their anti-microbial and antioxidant activities. Materials (Basel) 13.https://doi.org/10.3390/ma13040876

  80. Yu J, Xiong J, Cheng B et al (2005) Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J Solid State Chem 178:1968–1972. https://doi.org/10.1016/j.jssc.2005.04.003

    Article  ADS  CAS  Google Scholar 

  81. Vignesh K, Priyanka R, Rajarajan M, Suganthi A (2013) Photoreduction of Cr(VI) in water using Bi2O3- ZrO2 nanocomposite under visible light irradiation. Mater Sci Eng B 178:149–157. https://doi.org/10.1016/j.mseb.2012.10.035

    Article  CAS  Google Scholar 

  82. Ghasemi AK, Ghorbani M, Lashkenari MS, Nasiri N (2022) Controllable synthesis of zinc ferrite nanostructure with tunable morphology on polyaniline nanocomposite for supercapacitor application. J Energy Storage 51:104579. https://doi.org/10.1016/j.est.2022.104579

    Article  Google Scholar 

  83. Manjunatha AS, Pavithra NS, Shivanna M et al (2020) Synthesis of Citrus Limon mediated SnO2-WO3nanocomposite: applications to photocatalytic activity and electrochemical sensor. J Environ Chem Eng 8:104500. https://doi.org/10.1016/j.jece.2020.104500

    Article  CAS  Google Scholar 

  84. Mamontov E, Egami T, Brezny R et al (2000) Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J Phys Chem B 104:11110–11116. https://doi.org/10.1021/jp0023011

    Article  CAS  Google Scholar 

  85. Muhich C, Steinfeld A (2017) Principles of doping ceria for the solar thermochemical redox splitting of H2O and CO2. J Mater Chem A 5:15578–15590. https://doi.org/10.1039/c7ta04000h

    Article  CAS  Google Scholar 

  86. Kuhn M, Bishop SR, Rupp JLM, Tuller HL (2013) Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1-xZrxO2-δ) solid solutions. Acta Mater 61:4277–4288. https://doi.org/10.1016/j.actamat.2013.04.001

    Article  ADS  CAS  Google Scholar 

  87. Mudila H, Rana S, Zaidi MGH (2016) Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor. J Anal SciTechnol 7. https://doi.org/10.1186/s40543-016-0084-7

  88. Zhang L, Zhu B, Xu D, Qian Z, Xie P, Liu T, Yu J (2024) Yolk-shell FeSe2@ CoSe2/FeSe2 heterojunction as anode materials for sodium-ion batteries with high rate capability and stability. J Mater Sci Technol 172:185–195. https://doi.org/10.1016/j.jmst.2023.06.057

  89. Wang HW, Hu ZA, Chang YQ et al (2010) Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics. Electrochim Acta 55:8974–8980. https://doi.org/10.1016/j.electacta.2010.08.048

    Article  CAS  Google Scholar 

  90. Veeralakshmi S, Kalaiselvam S, Murugan R et al (2020) An approach to develop high performance supercapacitor using Bi2O3 based binary and ternary nanocomposites. J Mater Sci Mater Electron 31:22417–22426. https://doi.org/10.1007/s10854-020-04743-3

    Article  CAS  Google Scholar 

  91. Li H, Chen L, Zhou Q et al (2022) NiCo2O4 used as a loading material to improve the capacitive performance of nitrogen-doped carbon aerogel. J Mater Sci 57:12497–12510. https://doi.org/10.1007/s10853-022-07434-y

    Article  ADS  CAS  Google Scholar 

  92. Shaheen I, Ahmad KS, Zequine C et al (2020) Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage properties. RSC Adv 10:8115–8129. https://doi.org/10.1039/c9ra09477f

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zahra T, Ahmad KS, Zequine C et al (2023) Electrocatalytic water splitting studies on zirconium oxide nanoparticles synthesized by biomimetic synthesis route. Ionics (Kiel). https://doi.org/10.1007/s11581-023-05215-4

    Article  Google Scholar 

  94. Aziz SKT, Ummekar M, Karajagi I et al (2022) A Janus cerium-doped bismuth oxide electrocatalyst for complete water splitting. Cell Reports Phys Sci 3:101106. https://doi.org/10.1016/j.xcrp.2022.101106

    Article  CAS  Google Scholar 

  95. Azhar S, Ahmad KS, Abrahams I et al (2021) Phyto-inspired Cu/Bi oxide-based nanocomposites: synthesis, characterization, and energy relevant investigation. RSC Adv 11:30510–30519. https://doi.org/10.1039/d1ra05066d

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gautam J, Kannan K, Meshesha MM et al (2022) Heterostructure of polyoxometalate/zinc-iron-oxide nanoplates as an outstanding bifunctional electrocatalyst for the hydrogen and oxygen evolution reaction. J Colloid Interface Sci 618:419–430. https://doi.org/10.1016/j.jcis.2022.03.103

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Department of Environmental Sciences, Lab E-21, Fatima Jinnah Women University, Rawalpindi, Pakistan, is acknowledged by the writers. The authors also acknowledge Higher Education Commission of Pakistan. The authors are grateful to the Researchers Supporting Project number (RSP2024R374), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

S.A.1 wrote the main manuscript text and prepared all the figures. K.S.A. reviewed the manuscript and writing, results and figures. S.A.2 reviewed the paper. I.A. reviewed the paper and figures. W.L. and R.K.G. helped in preparing electrochemical figures. M.K.O. reviewed the paper.

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, S., Ahmad, K.S., Andleeb, S. et al. Bioinspired Bi2O3-ZrO2 nanocomposite heterojunction as energy storage material and high-performance electrocatalyst for water oxidation. Ionics 30, 1543–1558 (2024). https://doi.org/10.1007/s11581-024-05372-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05372-0

Keywords

Navigation