Skip to main content
Log in

Engineering metal oxide catalyst for volatile organic compounds oxidation

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are atmospheric pollutants that are considered the concerns for researchers as they can damage the human health by irritating the eyes and respiratory tract, causing skin allergies, headaches, sore throat, and fatigue. Therefore, the removal of indoor VOCs is urgently sought. Catalytic oxidation of VOCs over cost-effective metal oxides has been reported to be a promising strategy for the removal of VOCs because of the advantages of high efficiency, low cost, and less secondary pollution. In this review, we summarize the recent advances of metal oxide engineering for VOC oxidation, with the special attention to the categories and features of each VOC and the engineering strategies of metal oxides. Moreover, the applications of various metal oxides for catalytic VOC oxidation and the underlying structure-activity relationship are also illustrated. We hope this review will bring researchers new ideas for the design and fabrication of more efficient metal oxide catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration by another publisher. The corresponding author declares that all the data and materials are available.

References

  1. Yang Y, Zhao S, Cui L, Bi F, Zhang Y, Liu N, Wang Y, Liu F, He C, Zhang X (2023) Recent advancement and future challenges of photothermal catalysis for VOCs elimination: from catalyst design to applications. Green Energy Environ 8(3):654–672

    Article  CAS  Google Scholar 

  2. Liu B, Ji J, Zhang B, Huang W, Gan Y, Leung DYC, Huang H (2022) Catalytic ozonation of VOCs at low temperature: a comprehensive review. J Hazard Mater 422:126847

    Article  CAS  PubMed  Google Scholar 

  3. Simayi M, Shi Y, Xi Z, Ren J, Hini G, Xie S (2022) Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives. Sci Total Environ 826:153994

    Article  CAS  PubMed  Google Scholar 

  4. Li C, Liu Y, Cheng B, Zhang Y, Liu X, Qu Y, An J, Kong L, Zhang Y, Zhang C, Tan Q, Feng M (2022) A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: characteristics, sources and behaviours in response to O3 formation. Sci Total Environ 806:150247

    Article  CAS  PubMed  Google Scholar 

  5. Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, Veerapandian SKP, De Geyter N, Wang C, Chen Q, Morent R (2022) A critical review on plasma-catalytic removal of VOCs: catalyst development, process parameters and synergetic reaction mechanism. Sci Total Environ 828:154290

    Article  CAS  PubMed  Google Scholar 

  6. Zhan J, Feng Z, Liu P, He X, He Z, Chen T, Wang Y, He H, Mu Y, Liu Y (2021) Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer. Environ Pollut 285:117444

    Article  CAS  PubMed  Google Scholar 

  7. Li B, Ho SSH, Li X, Guo L, Chen A, Hu L, Yang Y, Chen D, Lin A, Fang X (2021) A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. Environ Int 156:106710

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Wang D, Wu X, Chen Y (2020) Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. Chin J Catal 41(4):550–560

    Article  CAS  Google Scholar 

  9. Li W, Wu X, Han N, Chen J, Qian X, Deng Y, Tang W, Chen Y (2016) MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sensors Actuators B Chem 225:158–166

    Article  CAS  Google Scholar 

  10. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J (2020) Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep Purif Technol 235:116213

    Article  CAS  Google Scholar 

  11. Liu Y, Kong L, Liu X, Zhang Y, Li C, Zhang Y, Zhang C, Qu Y, An J, Ma D, Tan Q, Feng M, Zha S (2021) Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China. Atmosp Poll Res 12(3):33–46

    Article  CAS  Google Scholar 

  12. Chen Y, Huang Z, Zhou M, Ma Z, Chen J, Tang X (2017) Single silver adatoms on nanostructured manganese oxide surfaces: boosting oxygen activation for benzene abatement. Environ Sci Technol 51(4):2304–2311

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Sun Z, Li S, Wang B, Liu Y, Zhang R, Zhao Z (2022) Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene. Nat Commun 13(1):6996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang M, Chen D, Li N, Xu Q, Li H, He J, Lu J (2020) Highly efficient catalysts of bimetallic Pt–Ru nanocrystals supported on ordered ZrO2 nanotube for toluene oxidation. ACS Appl Mater Interfaces 12(12):13781–13789

    Article  PubMed  Google Scholar 

  15. Qu J, Chen D, Li N, Xu Q, Li H, He J, Lu J (2019) Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Appl Catal B Environ 256:117877

    Article  CAS  Google Scholar 

  16. Li X, Wang Y, Chen D, Xiao J, Li N, Xu Q, Li H, He J, Lu J (2022) Elucidating the characteristics of palladium-anchored CeO2-modified hexagonal nanosheet Co3O4 catalysts for the complete oxidation of volatile organic compounds. Ind Eng Chem Res 61(22):7537–7546

    Article  CAS  Google Scholar 

  17. Xu H, Yuan J, He G, Chen H (2023) Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord Chem Rev 475:214869

    Article  CAS  Google Scholar 

  18. Xu H, Wang C, He G, Chen H (2023) Engineering defective trimetallic metal-organic framework nanosheets for advanced water oxidation electrocatalysis. Dalton Trans 52(24):8466–8472

    Article  CAS  PubMed  Google Scholar 

  19. Min X, Guo M, Liu L, Li L, Gu J-N, Liang J, Chen C, Li K, Jia J, Sun T (2021) Synthesis of MnO2 derived from spent lithium-ion batteries via advanced oxidation and its application in VOCs oxidation. J Hazard Mater 406:124743

    Article  CAS  PubMed  Google Scholar 

  20. He J, Zheng F, Zhou Y, Li X, Wang Y, Xiao J, Li Y, Chen D, Lu J (2022) Catalytic oxidation of VOCs over 3D@2D Pd/CoMn2O4 nanosheets supported on hollow Al2O3 microspheres. J Colloid Interface Sci 613:155–167

    Article  CAS  PubMed  Google Scholar 

  21. Wen X, Li W, Yan J, Wang X, Ren E, Shi Z, Li J, Ding X, Mo S, Mo D (2022) Strong metal-support interaction in Pd/CeO2 promotes the catalytic activity of ethyl acetate oxidation. J Phys Chem C 126(3):1450–1461

    Article  CAS  Google Scholar 

  22. Pei GX, Liu XY, Wang A, Lee AF, Isaacs MA, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T (2015) Ag alloyed pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal 5(6):3717–3725

    Article  CAS  Google Scholar 

  23. Luo L, Gong Z, Xu Y, Ma J, Liu H, Xing J, Tang J (2022) Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to c1 oxygenates with nearly 100% selectivity at room temperature. J Am Chem Soc 144(2):740–750

    Article  CAS  PubMed  Google Scholar 

  24. Zhao L, Wen M, Fang H, Meng K, Qiu X, Wu Q, Fu Y (2022) NiCoPd inlaid NiCo-bimetallene for efficient electrocatalytic methanol oxidation. Inorg Chem 61(26):10211–10219

    Article  CAS  PubMed  Google Scholar 

  25. Huang G, Liu L, Chen L, Gao L, Zhu J, Fu H (2022) Unique insights into photocatalytic VOCs oxidation over WO3/carbon dots nanohybrids assisted by water activation and electron transfer at interfaces. J Hazard Mater 423:127134

    Article  CAS  PubMed  Google Scholar 

  26. Liu H, Yang J, Jia Y, Wang Z, Jiang M, Shen K, Zhao H, Guo Y, Guo Y, Wang L, Dai S, Zhan W (2021) Significant improvement of catalytic performance for chlorinated volatile organic compound oxidation over RuOx supported on acid-etched Co3O4. Environ Sci Technol 55(15):10734–10743

    Article  CAS  PubMed  Google Scholar 

  27. Zheng Y, Su Y, Pang C, Yang L, Song C, Ji N, Ma D, Lu X, Han R, Liu Q (2021) Interface-enhanced oxygen vacancies of CoCuOx catalysts in situ grown on monolithic Cu foam for VOC catalytic oxidation. Environ Sci Technol 56(3):1905–1916

    Article  PubMed  Google Scholar 

  28. Zhou H, Zhao Y, Gan J, Xu J, Wang Y, Lv H, Fang S, Wang Z, Deng Z, Wang X, Liu P, Guo W, Mao B, Wang H, Yao T, Hong X, Wei S, Duan X, Luo J, Wu Y (2020) Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J Am Chem Soc 142(29):12643–12650

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Li X, Chen D, Li N, Xu Q, Li H, He J, Lu J (2023) Low quantity of Pt loaded onto CeCoOx nanoboxes: surface–rich reactive oxygen species for catalytic oxidation of toluene. J Hazard Mater 442

  30. Li X, Wang Y, Chen D, Li N, Xu Q, Li H, He J, Lu J (2023) A highly dispersed Pt/copper modified-MnO2 catalyst for the complete oxidation of volatile organic compounds: the effect of oxygen species on the catalytic mechanism. Green Energy Environ 8(2):538–547

    Article  CAS  Google Scholar 

  31. Wang Y, Li X, He J, Xiao J, Chen D, Li N, Xu Q, Li H, Lu J (2023) Manganese dioxide supported on hollow graphitized carbon spheres for the catalytic oxidation of toluene: improved adsorption and electron transfer. Separ Purif Tech 321:124203

    Article  CAS  Google Scholar 

  32. Zhou Y, He J, Chen D, Li X, Wang Y, Xiao J, Li N, Xu Q, Li H, He J, Lu J (2021) Flower-like Pt/Fe2O3-CeO2 catalysts for highly efficient low-temperature catalytic oxidation of toluene. Ind Eng Chem Res 60(15):5471–5481

    Article  CAS  Google Scholar 

  33. Li X, Chen D, Li N, Xu Q, Li H, He J, Lu J (2021) Highly efficient Pd catalysts loaded on La1−Sr MnO3 perovskite nanotube support for low-temperature toluene oxidation. J Alloys Compd 871

  34. Wang K, Kang J, Jin L, Yang L, Liu Y, Li Y, Chen G, Xu H (2023) Defect engineering of MOF toward enhanced electrocatalytic water oxidation. Ionics. https://doi.org/10.1007/s11581-023-05213-6

  35. Lu X, Du M, Wang T, Cheng W, Li J, He C, Li Z, Tian L (2023) Ultrafast fabrication of nanospherical CoFe alloys for boosting electrocatalytic water oxidation. Int J Hydrog Energy 48(87):34009–34017

    Article  CAS  Google Scholar 

  36. Zhang L, Wang J, Jiang K, Xiao Z, Gao Y, Lin S, Chen B (2022) Self-reconstructed metal-organic framework heterojunction for switchable oxygen evolution reaction. Angew Chem Int Ed 61(51):e202214794

    Article  CAS  Google Scholar 

  37. Tian L, Liu Y, He C, Tang S, Li J, Li Z (2023) Hollow heterostructured nanocatalysts for boosting electrocatalytic water splitting. Chem Rec 23(2):e202200213

    Article  CAS  PubMed  Google Scholar 

  38. Xu H, Wang K, He G, Chen H (2023) Concurrent alloying and vacancy engineering for intensifying hydrogen spillover towards alcohol–water co-electrolysis. J Mater Chem A 11(33):17609–17615

    Article  CAS  Google Scholar 

  39. Xu H, Yang L, Wang K, Jin L, Liu Y, He G, Chen H (2023) Etched high-entropy prussian blue analogues as trifunctional catalysts for water, ethanol, and urea electrooxidation. Inorg Chem 62(28):11271–11277

    Article  CAS  PubMed  Google Scholar 

  40. Dutta S, Indra A, Han H, Song T (2018) An intriguing pea-like nanostructure of cobalt phosphide on molybdenum carbide incorporated nitrogen-doped carbon nanosheets for efficient electrochemical water splitting. ChemSusChem 11(22):3956–3964

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Liu S, Wang Y, Zhang Q, Gu L, Zhao S, Xu D, Li Y, Bao J, Dai Z (2018) Ru Modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J Am Chem Soc 140(8):2731–2734

    Article  CAS  PubMed  Google Scholar 

  42. Yun Q, Lu Q, Li C, Chen B, Zhang Q, He Q, Hu Z, Zhang Z, Ge Y, Yang N, Ge J, He YB, Gu L, Zhang H (2019) Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 13(12):14329–14336

    Article  CAS  PubMed  Google Scholar 

  43. Wang K, Ye Z, Liu C, Xi D, Zhou C, Shi Z, Xia H, Liu G, Qiao G (2016) Morphology-controllable synthesis of cobalt telluride branched nanostructures on carbon fiber paper as electrocatalysts for hydrogen evolution reaction. ACS Appl Mater Interfaces 8(5):2910–2916

    Article  CAS  PubMed  Google Scholar 

  44. Xiao X, Zou L, Pang H, Xu Q (2020) Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev 49(1):301–331

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Zhao J, Yang J, Cheng J, Tan Y, Feng H, Li Y (2020) An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Mikrochim Acta 187(7):380

    Article  CAS  PubMed  Google Scholar 

  46. Li Z, Xu X, Lu X, He C, Huang J, Sun W, Tian L (2022) Synergistic coupling of FeNi3 alloy with graphene carbon dots for advanced oxygen evolution reaction electrocatalysis. J Colloid Interface Sci 615:273–281

    Article  CAS  PubMed  Google Scholar 

  47. Xu S, Huang Q, Xue J, Yang Y, Mao L, Huang S, Qian J (2022) Morphologically controlled metal-organic framework-derived FeNi oxides for efficient water oxidation. Inorg Chem 61(23):8909–8919

    Article  CAS  PubMed  Google Scholar 

  48. Zhu W, Chen X, Li C, Liu Z, Liang C (2021) Manipulating morphology and surface engineering of spinel cobalt oxides to attain high catalytic performance for propane oxidation. J Catal 396:179–191

    Article  CAS  Google Scholar 

  49. Zhang J, Qin Z, Zeng D, Xie C (2017) Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys Chem Chem Phys 19(9):6313–6329

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Li B, Zhang D, Cheng L, Xiang Q (2020) Crystalline carbon nitride supported copper single atoms for photocatalytic CO(2) reduction with nearly 100% CO selectivity. ACS Nano 14(8):10552–10561

    Article  CAS  PubMed  Google Scholar 

  51. Fan Z, Zhang X, Yang J, Wu XJ, Liu Z, Huang W, Zhang H (2015) Synthesis of 4H/fcc-Au@metal sulfide core-shell nanoribbons. J Am Chem Soc 137(34):10910–10913

    Article  CAS  PubMed  Google Scholar 

  52. Fan Z, Luo Z, Chen Y, Wang J, Li B, Zong Y, Zhang H (2016) Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) core-shell nanoribbons for electrocatalytic oxygen evolution reaction. Small 12(29):3908–3913

    Article  CAS  PubMed  Google Scholar 

  53. Long J, Yao Q, Zhang X, Wu H, Lu Z-H (2023) Defects engineering of metal-organic framework immobilized Ni-La(OH)3 nanoparticles for enhanced hydrogen production. Appl Catal B Environ 320:121989

    Article  CAS  Google Scholar 

  54. Wang X, Wu J, Wang J, Xiao H, Chen B, Peng R, Fu M, Chen L, Ye D, Wen W (2019) Methanol plasma-catalytic oxidation over CeO2 catalysts: effect of ceria morphology and reaction mechanism. Chem Eng J 369:233–244

    Article  CAS  Google Scholar 

  55. Zhang Z, Zhu Y, Asakura H, Zhang B, Zhang J, Zhou M, Han Y, Tanaka T, Wang A, Zhang T, Yan N (2017) Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat Commun 8(1):16100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu W, Liu R, Zhang X (2020) Controllable synthesis of 3D hierarchical Co3O4 catalysts and their excellent catalytic performance for toluene combustion. Appl Surf Sci 507:145174

    Article  CAS  Google Scholar 

  57. Zhuang W, Du M, Lu X, Chen Z, Huang Z, Liu D, Cheng W, Tian L (2023) Fe doping modifying electronic structure of NiSe2 for boosting electrocatalytic oxygen evolution reaction. Ionics 29:1069–1076

    Article  CAS  Google Scholar 

  58. Xu H, Wang C, Huang B, Shang H, Du Y (2023) Dual-cation doping precisely reducing the energy barrier of the rate-determining step for promoting oxygen-evolving activity. Inorg Chem Front 10(7):2067–2074

    Article  CAS  Google Scholar 

  59. Xu H, Li J, Chu X (2023) Interfacial built-in electric-field for boosting energy conversion electrocatalysis. Nanoscale Horiz 8(4):441–452

    Article  CAS  PubMed  Google Scholar 

  60. Xu H, Li J, Chu X (2023) Intensifying hydrogen spillover for boosting electrocatalytic hydrogen evolution reaction. Chem Rec 23(3):e202200244

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Yu H, Zhao S, Ma H, Li L, Hu F, Li L, Pan H, El-Khatib KM, Peng S (2022) Electronic modulation of cobalt–molybdenum oxide via Te doping embedded in a carbon matrix for superior overall water splitting. Inorg Chem Front 9(15):3788–3796

    Article  CAS  Google Scholar 

  62. Tian L, Pang X, Xu H, Liu D, Lu X, Li J, Wang J, Li Z (2022) Cation-anion dual doping modifying electronic structure of hollow CoP nanoboxes for enhanced water oxidation electrocatalysis. Inorg Chem 61(42):16944–16951

    Article  CAS  PubMed  Google Scholar 

  63. Karmakar A, Sankar SS, Kumaravel S, Madhu R, Mahmoud KH, El-Bahy ZM, Kundu S (2022) Ruthenium-doping-induced amorphization of VS(4) nanostructures with a rich sulfur vacancy for enhanced hydrogen evolution reaction in a neutral electrolyte medium. Inorg Chem 61(3):1685–1696

    Article  CAS  PubMed  Google Scholar 

  64. Zhang F, Wang X, Han W, Qian Y, Qiu L, He Y, Lei L, Zhang X (2022) The synergistic activation of Ce-doping and CoP/Ni3P hybrid interaction for efficient water splitting at large-current-density. Adv Funct Mater 32:e2212381

    Google Scholar 

  65. Zhang Y, Hui ZX, Zhou HY, Zai SF, Wen Z, Chen Li J, Yang CC, Jiang Q (2022) Ga doping enables superior alkaline hydrogen evolution reaction performances of CoP. Chem Eng J 429:132012

    Article  CAS  Google Scholar 

  66. Xu H, Zhao Y, Wang Q, He G, Chen H (2022) Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev 451:214261

    Article  CAS  Google Scholar 

  67. Bat-Erdene M, Batmunkh M, Sainbileg B, Hayashi M, Bati ASR, Qin J, Zhao H, Zhong YL, Shapter JG (2021) Highly dispersed Ru nanoparticles on boron-doped Ti3C2Tx (MXene) nanosheets for synergistic enhancement of electrocatalytic hydrogen evolution. Small 17(38):e2102218

    Article  PubMed  Google Scholar 

  68. Wang C, Shang H, Li J, Wang Y, Xu H, Wang C, Guo J, Du Y (2021) Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. Chem Eng J 420:129805

    Article  CAS  Google Scholar 

  69. He B, Song JJ, Li XY, Xu CY, Li YB, Tang YW, Hao QL, Liu HK, Su Z (2021) A nitrogen-doped NiCo2S4/CoO hollow multi-layered heterostructure microsphere for efficient oxygen evolution in Zn-air batteries. Nanoscale 13(2):810–818

    Article  PubMed  Google Scholar 

  70. Wang M, Wang JQ, Xi C, Cheng CQ, Kuai CG, Zheng XL, Zhang R, Xie YM, Dong CK, Chen YJ, Du XW (2021) Valence-state effect of iridium dopant in NiFe(OH)2 catalyst for hydrogen evolution reaction. Small 17(21):e2100203

    Article  PubMed  Google Scholar 

  71. Li P, Duan X, Kuang Y, Li Y, Zhang G, Liu W, Sun X (2018) Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv Energy Mater 8(15):e1703341

    Article  Google Scholar 

  72. Feng C, Chen C, Wang J, Xiong G, Wang Z, Pan Y, Fei Z, Lu Y, Liu Y, Zhang R, Li X (2023) Total oxidation of propane in Ag-doped MnCeOx catalysts: the role of Ag species. Fuel 332:126208

    Article  CAS  Google Scholar 

  73. Yang S, Qi Z, Wen Y, Wang X, Zhang S, Li W, Li S (2023) Generation of abundant oxygen vacancies in Fe doped δ-MnO2 by a facile interfacial synthesis strategy for highly efficient catalysis of VOCs oxidation. Chem Eng J 452:126208

    Article  Google Scholar 

  74. Wang Y, Chen Z, Han P, Du Y, Gu Z, Xu X, Zheng G (2018) Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal 8(8):7113–7119

    Article  CAS  Google Scholar 

  75. Gao Y, Huang K, Yan C, Li S, Zhang H, Cheng L, Huang F (2022) Interfacial engineering of Cu-Fe2O3 nanotube arrays with built-in electric field and oxygen vacancies for boosting the electrocatalytic reduction of nitrates. Mater Adv 3(18):7107–7115

    Article  CAS  Google Scholar 

  76. Peng S, Gong F, Li L, Yu D, Ji D, Zhang T, Hu Z, Zhang Z, Chou S, Du Y, Ramakrishna S (2018) Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J Am Chem Soc 140(42):13644–13653

    Article  CAS  PubMed  Google Scholar 

  77. Miao X, Wu L, Lin Y, Yuan X, Zhao J, Yan W, Zhou S, Shi L (2019) The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: are more better? Chem Commun (Camb) 55(10):1442–1445

    Article  CAS  PubMed  Google Scholar 

  78. Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y (2018) Defect effects on TiO2 nanosheets: stabilizing single atomic site au and promoting catalytic properties. Adv Mater 30(11):e1705369

    Article  Google Scholar 

  79. Zhang Y, Lu T, Ye Y, Dai W, Zhu Y, Pan Y (2020) Stabilizing oxygen vacancy in entropy-engineered CoFe(2)O(4)-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction. ACS Appl Mater Interfaces 12(29):32548–32555

    Article  CAS  PubMed  Google Scholar 

  80. Ji X, Zhang Y, Ma Z, Qiu Y (2020) Oxygen vacancy-rich Ni/NiO@NC nanosheets with schottky heterointerface for efficient urea oxidation reaction. ChemSusChem 13(18):5004–5014

    Article  CAS  PubMed  Google Scholar 

  81. Zhang L, Jang H, Liu H, Kim MG, Yang D, Liu S, Liu X, Cho J (2021) Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew Chem Int Ed 60(34):18821–18829

    Article  CAS  Google Scholar 

  82. Singh TI, Rajeshkhanna G, Pan UN, Kshetri T, Lin H, Kim NH, Lee JH (2021) Alkaline water splitting enhancement by MOF-derived Fe-Co-Oxide/Co@NC-mNS heterostructure: boosting OER and HER through defect engineering and in situ oxidation. Small 17(29):e2101312

    Article  PubMed  Google Scholar 

  83. Qiu Y, Dai X, Wang Y, Ji X, Ma Z, Liu S (2023) The polyoxometalates mediated preparation of phosphate-modified NiMoO(4-x) with abundant O-vacancies for H(2) production via urea electrolysis. J Colloid Interface Sci 629(Pt A):297–309

    Article  CAS  PubMed  Google Scholar 

  84. Xu H, Wang K, Jin L, Yang L, Yuan J, Zhang W, He G, Chen H (2023) Synergistically engineering of vacancy and doping in thiospinel to boost electrocatalytic oxygen evolution in alkaline water and seawater. J Colloid Interface Sci 650(Pt B):1500–1508

    Article  CAS  PubMed  Google Scholar 

  85. He J, Li X, Wang Y, Xiao J, Liu Y, Li H, Li N, Xu Q, He J, Chen D, Lu J (2023) Ni-Mn spinel aerogel catalysts with adsorption induced superior activity for low-temperature toluene oxidation. Chem Eng J 454:140039

    Article  CAS  Google Scholar 

  86. Pi Y, Zhang N, Guo S, Guo J, Huang X (2016) Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett 16(7):4424–4430

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Y, Sun T, Zhang P, Liu K, Li F, Xu L (2023) Synthesizing MOF-derived NiNC catalyst via surfactant modified strategy for efficient electrocatalytic CO(2) to CO. J Colloid Interface Sci 631(Pt A):96–101

    Article  CAS  PubMed  Google Scholar 

  88. Zhang C, Lu J, Liu C, Zou Y, Yuan L, Wang J, Yu C (2022) ZnO nanoparticles embedded in hollow carbon fiber membrane for electrochemical H2O2 production by two-electron water oxidation reaction. Environ Res 206:112290

    Article  CAS  PubMed  Google Scholar 

  89. Abazari R, Sanati S, Morsali A (2022) Mixed metal Fe2Ni MIL-88B metal-organic frameworks decorated on reduced graphene oxide as a robust and highly efficient electrocatalyst for alkaline water oxidation. Inorg Chem 61(8):3396–3405

    Article  CAS  PubMed  Google Scholar 

  90. Lu X, Wang T, Cao M, Cheng W, Yang H, Xu H, He C, Tian L, Li Z (2023) Homogeneous NiMoO4-Co(OH)2 bifunctional heterostructures for electrocatalytic oxygen evolution and urea oxidation reaction. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.04.257

  91. Li Y, Yu X, Gao J, Ma Y (2023) Structural and electronic modulation of (Fe,Ni)2P@Ni2P heterostructure for efficient overall water splitting at high current density. Chem Eng J 470:144373

    Article  CAS  Google Scholar 

  92. Wang B, Yang Q, Li B, Ma H, Xuan Y, Gao C, Liang Y, Zhang K, Chang Q, Broesicke O, Wang H, Wang D, Luan T, Han K, Lu C, Crittenden J (2023) Heterostructure-strengthened metal-support interaction of single-atom Pd catalysts enabling efficient oxygen activation for CO and VOC oxidation. Appl Catal B Environ 332:122753

    Article  CAS  Google Scholar 

  93. Xu H, Huang B, Zhao Y, He G, Chen H (2022) Engineering heterostructured Pd-Bi2Te3 doughnut/Pd hollow nanospheres for ethylene glycol electrooxidation. Inorg Chem 61(10):4533–4540

    Article  CAS  PubMed  Google Scholar 

  94. Wang H, Niu Z, Peng Z, Wu X, Gao C, Zhao S, Kim YD, Wu H, Du X, Liu Z, Li B (2022) Engineering interface on a 3D CoxNi1-x(OH)2@MoS2 hollow heterostructure for robust electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 14(7):9116–9125

    Article  CAS  PubMed  Google Scholar 

  95. Nai J, Xu X, Xie Q, Lu G, Wang Y, Luan D, Tao X, Lou XWD (2022) Construction of Ni(CN)2/NiSe2 heterostructures by stepwise topochemical pathways for efficient electrocatalytic oxygen evolution. Adv Mater 34(4):e2104405

    Article  PubMed  Google Scholar 

  96. Lao X, Liao X, Chen C, Wang J, Yang L, Li Z, Ma JW, Fu A, Gao H, Guo P (2023) Pd-enriched-core/Pt-enriched-shell high-entropy alloy with face-centred cubic structure for C(1) and C(2) alcohol oxidation. Angew Chem Int Ed 135:e202304510

    Article  Google Scholar 

  97. Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z (2022) Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C-C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed 61(16):e202200899

    Article  CAS  Google Scholar 

  98. Ding Q, Xu D, Ding J, Fan W, Zhang X, Li Y, Shi W (2021) ZIF-8 derived ZnO/TiO2 heterostructure with rich oxygen vacancies for promoting photoelectrochemical water splitting. J Colloid Interface Sci 603:120–130

    Article  CAS  PubMed  Google Scholar 

  99. Wang D, Xiao P, Gu K, Liang X, Zhang M (2021) MOF-derived polyhedral NiMoO4@NiO p-p heterostructure as an effective bridge for regulating carriers enhanced sensitivity and selectivity to trimethylamine. Sensors Actuators B Chem 343:130115

    Article  CAS  Google Scholar 

  100. Li X, Wang Y, He J, Xiao J, Xu W, Chen D, Li N, Xu Q, Li H, Lu J (2023) Combination of porous covalent triazine frameworks with spinel for highly improved photothermal catalytic oxidation of toluene. Appl Catal B Environ 331:122690

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (52300076).

Author information

Authors and Affiliations

Authors

Contributions

Hui Zhao: conceptualization, formal analysis, writing. Jipeng Wang: writing, review, editing, project administration

Corresponding author

Correspondence to Jipeng Wang.

Ethics declarations

Ethical approval

This work is not applicable to both human and/or animal studies.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Table S1 Summary of different VOCs removal technologies (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Wang, J. Engineering metal oxide catalyst for volatile organic compounds oxidation. Ionics 30, 11–25 (2024). https://doi.org/10.1007/s11581-023-05283-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05283-6

Keywords

Navigation