Skip to main content
Log in

Effect of La co-doping in Zr-doped CeO2 (LaxZr0.05Ce1-(x+0.05)O2) catalyst synthesized via orange peel extract for soot oxidation

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The La-Zr/CeO2 (LaxZr0.05Ce1-(x+0.05)O2) materials were synthesized by the green synthesis process using orange peel extract. The identification of the sample’s phase, morphology, and functional groups was done by XRD, FE-SEM, and FTIR, respectively. EDX (energy dispersive X-ray spectroscopy) confirmed the elemental identification of materials. The synthesized samples were tested for soot oxidation under loose contact conditions. Thermogravimetric-differential scanning calorimetry (TGA-DSC) characterization was used to test the soot oxidation activity of samples by identifying the loss of weight percent of materials with soot in the temperature range of 100 to 800°C. The materials showed soot oxidation in the temperature range of 362 to 590 °C. The crystallite size of materials was found in the range of 7.5 to 8.3 nm, calculated from Scherrer’s equation. The 1% co-doping of La into Zr/CeO2 was found better for soot oxidation than the other synthesized materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the materials have been synthesized in our Nanomaterials Research Laboratory of Rajkiya Engineering College, Ambedkar Nagar, Uttar Pradesh, India. The characterizations of the samples have been done by the Department of Materials Sciences and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India and from Central Instrumentation Facility of the National Institute of Pharmaceutical Education and Research, Raebareli, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India. The data of this study are available from the corresponding author on request.

References

  1. Mallik C (2019) Anthropogenic sources of air pollution. Air Pollut Sources Impacts Control 6–25. https://doi.org/10.1079/9781786393890.0006

  2. Saxena P, Naik V (2018) Air pollution: sources, impacts and controls. CAB International https://books.google.co.in/books?id=diONDwAAQBAJ

    Google Scholar 

  3. Dhal GC, Dey S, Mohan D, Prasad R (2018) Simultaneous abatement of diesel soot and NOX emissions by effective catalysts at low temperature: an overview. Catal Rev - Sci Eng 60:437–496. https://doi.org/10.1080/01614940.2018.1457831

    Article  CAS  Google Scholar 

  4. Dey S, Mehta NS (2020) Automobile pollution control using catalysis. Resour Environ Sustain 2:100006. https://doi.org/10.1016/j.resenv.2020.100006

    Article  Google Scholar 

  5. O. History, Mobile emissions control catalysts (BASF), (n.d.). https://catalysts.basf.com/industries/automotive-transportation/mobile-emissions-control-catalysts. Accessed 17 October 2022

  6. Deng J, Li S, Xiong L, Jiao Y, Yuan S, Wang J, Chen Y (2020) Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Appl Surf Sci 505. https://doi.org/10.1016/j.apsusc.2019.144301

  7. Tsoncheva T, Ivanova R, Henych J, Dimitrov M, Kormunda M, Kovacheva D, Scotti N, Santo VD, Štengl V (2015) Effect of preparation procedure on the formation of nanostructured ceria–zirconia mixed oxide catalysts for ethyl acetate oxidation: homogeneous precipitation with urea vs template-assisted hydrothermal synthesis. Appl Catal A Gen 502:418–432. https://doi.org/10.1016/j.apcata.2015.05.034

    Article  CAS  Google Scholar 

  8. Atribak I, Guillén-Hurtado N, Bueno-López A, García-García A (2010) Influence of the physico-chemical properties of CeO2 -ZrO2 mixed oxides on the catalytic oxidation of NO to NO2. Appl Surf Sci 256:7706–7712. https://doi.org/10.1016/j.apsusc.2010.06.042

    Article  CAS  Google Scholar 

  9. Hou X, Zhao K, Marina OA, Grant Norton M, Ha S (2019) NiMo-ceria-zirconia-based anode for solid oxide fuel cells operating on gasoline surrogate. Appl Catal Environ 242:31–39. https://doi.org/10.1016/j.apcatb.2018.09.095

    Article  CAS  Google Scholar 

  10. Yang BC, Go D, Oh S, Woo Shin J, Kim HJ, An J (2019) Atomic-layer-deposited ZrO2-doped CeO2 thin film for facilitating oxygen reduction reaction in solid oxide fuel cell. Appl Surf Sci 473:102–106. https://doi.org/10.1016/j.apsusc.2018.12.142

  11. Ouyang J, Zhao Z, Yang H, He J, Suib SL (2019) Surface redox characters and synergetic catalytic properties of macroporous ceria-zirconia solid solutions. J Hazard Mater 366:54–64. https://doi.org/10.1016/j.jhazmat.2018.11.083

    Article  CAS  PubMed  Google Scholar 

  12. Gerçeker D, Önal I (2013) A DFT study on CO oxidation on Pd4 and Rh4 clusters and adsorbed Pd and Rh atoms on CeO2 and Ce0.75Zr0.25O2 supports for TWC applications. Appl Surf Sci 285:927–936. https://doi.org/10.1016/j.apsusc.2013.09.016

  13. Qi P, You J, Wang Y, Tian L, Qi T (2023) Pt/C catalysts containing CeO2 with different morphologies for the hydrogen evolution reaction. Ionics (Kiel). https://doi.org/10.1007/s11581-023-05214-5

  14. Giménez-Mañogil J, García-García A (2017) Identifying the nature of the copper entities over ceria-based supports to promote diesel soot combustion: synergistic effects. Appl Catal A Gen 542:226–239. https://doi.org/10.1016/j.apcata.2017.05.031

    Article  CAS  Google Scholar 

  15. Kaplin IY, Lokteva ES, Golubina EV, Shishova VV, Maslakov KI, Fionov AV, Isaikina OY, Lunin VV (2019) Efficiency of manganese modified CTAB-templated ceria-zirconia catalysts in total CO oxidation. Appl Surf Sci 485:432–440. https://doi.org/10.1016/j.apsusc.2019.04.206

    Article  CAS  Google Scholar 

  16. Dulgheru P, Sullivan JA (2013) Rare earth (La, Nd, Pr) doped ceria zirconia solid solutions for soot combustion. Top Catal 56:504–510. https://doi.org/10.1007/s11244-013-0006-5

    Article  CAS  Google Scholar 

  17. Mishra UK, Chandel VS, Mourya VK, Singh OP (2022) Removal of soot, CO, NOx, and PM by Ag-based nanomaterials: a review. Braz J Phys Ther 52:172. https://doi.org/10.1007/s13538-022-01176-7

    Article  CAS  Google Scholar 

  18. Mishra UK, Chandel VS, Singh OP (2021) A review on cerium oxide–based catalysts for the removal of contaminants. Emergent Mater. https://doi.org/10.1007/s42247-021-00295-2

  19. Padikkaparambil S, Perumbilavil Padi J, Vadery V, Sugunan S, Njarakkattuvalappil Narayanan B (2019) Facile preparation of noble metal–free Cu-doped CeO2 oxidation catalyst suitable for engine exhaust gas treatment. J Environ Eng 145:04018131. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001474

  20. Sudarsanam P, Hillary B, Amin MH, Rockstroh N, Bentrup U, Brückner A, Bhargava SK (2018) Heterostructured copper-ceria and iron-ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion. Langmuir 34:2663–2673. https://doi.org/10.1021/acs.langmuir.7b03998

    Article  CAS  PubMed  Google Scholar 

  21. Li F, Zhao B, Tan Y, Chen W, Tian M (2022) Preparation of Al2O3–CeO2 by hydrothermal method supporting copper oxide for the catalytic oxidation of CO and C3H8. Ind Eng Chem Res 61:4739–4751. https://doi.org/10.1021/acs.iecr.1c03906

    Article  CAS  Google Scholar 

  22. Wang M, Hong X, Chen J, Li J, Chen X, Mi J, Liu Z, Xiong S (2022) Two-step hydrothermal synthesis of highly active MnOx-CeO2 for complete oxidation of formaldehyde. Chem Eng J 440:135854. https://doi.org/10.1016/j.cej.2022.135854

  23. Wu X, Liang Q, Weng D, Lu Z (2007) The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture. Cat Com 8:2110–2114. https://doi.org/10.1016/j.catcom.2007.04.023

    Article  CAS  Google Scholar 

  24. Shirzad Choubari M, Mazloom J, Ghodsi FE (2022) Supercapacitive properties, optical band gap, and photoluminescence of CeO2–ZnO nanocomposites prepared by eco-friendly green and citrate sol-gel methods: a comparative study. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.04.100

    Article  Google Scholar 

  25. Ma J, Hong Y, Sun Y, Peng F (2022) Fabrication of CeO2 microspheres by sol−gel reaction with polymerization via single emulsion. Nucl Anal 1:100008. https://doi.org/10.1016/j.nucana.2022.100008

  26. Ansari MJ, Machek P, Jarosova M, Abed AM, Dehno Khalaji A (2022) Facile co-precipitation thermal degradation synthesis of CeO2 nanoparticles and their photocatalytic degradation of Rhodamine B. J Mater Sci Mater Electron 33:5686–5695. https://doi.org/10.1007/s10854-022-07754-4

    Article  CAS  Google Scholar 

  27. Fu S, You K, Chen Z, Liu T, Wang Q, Zhao F, Ai Q, Liu P, Luo H (2022) Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4−CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane. Front Chem Sci Eng. https://doi.org/10.1007/s11705-022-2145-3

    Article  Google Scholar 

  28. Yang Y, Yang ZZ, Di Xu H, Xu BQ, Zhang YH, Gong MC, Chen YQ (2015) Influence of La on CeO2-ZrO2 catalyst for oxidation of soluble organic fraction from diesel exhaust. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 31:2358–2365. https://doi.org/10.3866/PKU.WHXB201510135

    Article  CAS  Google Scholar 

  29. Mishra UK, Chandel VS, Singh OP, Alam N (2022) Synthesis of CeO2 and Zr-doped CeO2 (Ce1−xZrxO2) catalyst by green synthesis for soot oxidation activity. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-06997-x

    Article  Google Scholar 

  30. Rosi H, Janci M, Preethi M (2022) Phyto-mediated green synthesis of CeO2–ZnO nanoparticles using glycosmis mauritiana leaf extract: antibacterial activity and photodegradative applications. Mater Today Proc 48:561–567. https://doi.org/10.1016/j.matpr.2021.09.091

    Article  CAS  Google Scholar 

  31. Sebastiammal S, Bezy NA, Somaprabha A, Henry J, Biju CS, Fathima AL (2022) Chemical and sweet basil leaf mediated synthesis of cerium oxide (CeO2) nanoparticles: antibacterial action toward human pathogens. Phosphorus Sulfur Silicon Relat Elem 197:237–243. https://doi.org/10.1080/10426507.2021.2017435

    Article  CAS  Google Scholar 

  32. Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng A C. 49:408–415. https://doi.org/10.1016/j.msec.2015.01.042

    Article  CAS  Google Scholar 

  33. Miri A, Beiki H, Najafidoust A, Khatami M, Sarani M (2021) Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess Biosyst Eng 44:1891–1899. https://doi.org/10.1007/s00449-021-02569-9

    Article  CAS  PubMed  Google Scholar 

  34. Cai W, Zhao Y, Chen M, Jiang X, Wang H, Ou M, Wan S, Zhong Q (2018) The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation. Chem Eng J 333:414–422. https://doi.org/10.1016/j.cej.2017.10.002

    Article  CAS  Google Scholar 

  35. Boningari T, Somogyvari A, Smirniotis PG (2017) Ce-based catalysts for the selective catalytic reduction of NOx in the presence of excess oxygen and simulated diesel engine exhaust conditions. Ind Eng Chem Res 56:5483–5494. https://doi.org/10.1021/acs.iecr.7b00045

    Article  CAS  Google Scholar 

  36. Che J, Liu X, Wang X, Zhang Q, Zhang E, Liang G, Zhang S (2022) Ultralow oxygen ion diffusivity in pyrochlore-type La2(Zr0.7Ce0.3)2O7. J Mater Sci Technol 102:174–185. https://doi.org/10.1016/j.jmst.2021.07.005

    Article  CAS  Google Scholar 

  37. Prabhu YT, Rao KV, Kumar VSS, Kumari BS (2014) X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng 04:21–28. https://doi.org/10.4236/wjnse.2014.41004

    Article  CAS  Google Scholar 

  38. Ilmi MM, Nurdini N, Maryanti E, Setiawan P, Ismunandar I (2021) X-ray diffraction peak profile for determination of microstructural properties of hematite (Fe2O3). J Res Dev Nanotechnol 1:11–17. https://doi.org/10.5614/jrdn.2021.1.1.16667

    Article  Google Scholar 

  39. Altaf M, Manoharadas S, Zeyad MT (2021) Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc Res Tech 84:1638–1648. https://doi.org/10.1002/jemt.23724

    Article  CAS  PubMed  Google Scholar 

  40. Carvalho MH, Piton MR, Lemine OM, Bououdina M, Galeti HVA, Souto S, Pereira EC, Gobato YG, de Oliveira AJA (2018) Effects of strain, defects and crystal phase transition in mechanically milled nanocrystalline In2O3 powder. Mater Res Express 6:25017. https://doi.org/10.1088/2053-1591/aaec62

    Article  CAS  Google Scholar 

  41. Ai C, Zhang Y, Wang P, Wang W (2019) Catalytic combustion of diesel soot on Ce/Zr series catalysts prepared by sol-gel method. Catalysts. 9. https://doi.org/10.3390/catal9080646

  42. Sahoo SK, Mohapatra M, Anand S (2015) Absorption and emission properties of Zr-doped nanoceria synthesised by co-precipitation-hydrothermal treatment route. J Exp Nanosci 10:1012–1027. https://doi.org/10.1080/17458080.2014.951411

    Article  CAS  Google Scholar 

  43. Wang M, Shen M, Jin X, Tian J, Shao Y, Zhang L, Li Y, Shi J (2022) Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem Eng J 427:130987. https://doi.org/10.1016/j.cej.2021.130987

    Article  CAS  Google Scholar 

  44. Chen LF, González G, Wang JA, Noreña LE, Toledo A, Castillo S, Morán-Pineda M (2005) Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen. Appl Surf Sci 243:319–328. https://doi.org/10.1016/j.apsusc.2004.09.074

    Article  CAS  Google Scholar 

  45. Ornatska M, Sharpe E, Andreescu D, Andreescu S (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83:4273–4280. https://doi.org/10.1021/ac200697y

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Zhu J-J, Zhu J-M, Liao X-H, Xu S, Ding T, Chen H-Y (2002) Preparation of nanocrystalline ceria particles by sonochemical and microwave assisted heating methods. Phys Chem Chem Phys 4:3794–3799. https://doi.org/10.1039/B201394K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the “Technical Education Quality Improvement Program (TEQIP-III) of the Government of India” of Rajkiya Engineering College, Ambedkar Nagar, affiliated with Dr. A.P.J. Abdul Kalam Technical University Lucknow, Uttar Pradesh, India, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Upendra Kumar Mishra written the manuscript which was edited by Prof. Vishal Singh Chandel, Dr. Navshad Alam and cross checked by Prof. Om Prakash Singh. The characterizations and analysis was combinedly done by all the author's including Dr. Anuj Kumar Sharma. All the authors have contributed equally to the manuscript and permit it for submission.

Corresponding author

Correspondence to Upendra Kumar Mishra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, U.K., Chandel, V.S., Singh, O.P. et al. Effect of La co-doping in Zr-doped CeO2 (LaxZr0.05Ce1-(x+0.05)O2) catalyst synthesized via orange peel extract for soot oxidation. Ionics 30, 509–519 (2024). https://doi.org/10.1007/s11581-023-05273-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05273-8

Keywords

Navigation