Skip to main content

Advertisement

Log in

Biomimetic [AV-Er2O3-doped δ-Bi2O3]-stacked nanoplates: an efficient electrocatalyst for OER/HER and electrode material for supercapacitor application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Current investigation explores the role of the phyto-metabolites of the Amaranthus viridis for development of the energy-active nanocomplex. The green route adopted for synthesis of doped nanocomplexes signifies economic viability and ecological convivial. Biomimetically prepared nanoparticles synthesized in different doping concentrations exhibited bandgap in the range of 2.5 to 3.2 eV. Average crystallite sizes of 13.97, 19.64, 16.11, and 11.16 nm were determined through XRD for the doped concentrations of 2.5, 5, 7.5, and 10%, respectively. Synthesized doped nanoparticles exhibit porous sheet-like morphology. The synthesized material was then explored for HER and OER potential through linear sweep voltammetry and electrochemical impedance spectroscopy studies. Overpotential value of 154 mV was obtained for hydrogen evolution reaction and 445 mV for oxygen evolution reaction. Furthermore, highest capacitance of 287 F/g was obtained at 2 mV/s through cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request to the corresponding author.

Code availability

None.

References

  1. Jaffri SB, Ahmad KS (2020) Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants. Envir Sci Poll Res 27:9669–9685. https://doi.org/10.1007/s11356-020-07626-6

    Article  CAS  Google Scholar 

  2. Jaffri SB, Ahmad KS (2018) Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif Cells Nanomed Biotech 46:127–137. https://doi.org/10.1080/21691401.2017.1414826

    Article  CAS  Google Scholar 

  3. Shaheen I, Ahmad KS, Jaffri SB, Ali D (2021) Biomimetic [MoO3@ZnO] semiconducting nanocomposites: chemo-proportional fabrication, characterization and energy storage potential exploration. Renew Energy 167:568–579. https://doi.org/10.1016/j.renene.2020.11.115

    Article  CAS  Google Scholar 

  4. Kombaiah K, Vijaya JJ, Kennedy LJ, Bououdina M, Kaviyarasu K, Ramalingam RJ, Al-Lohedan HA, Munusamy MA (2017) A green approach: synthesis, characterization and opto-magnetic properties of Mg x Mn 1–x Fe 2 O 4 spinel nanoparticles. J Mater Sci Mater Electron 28:10321–10329. https://doi.org/10.1007/s10854-017-6800-2

    Article  CAS  Google Scholar 

  5. Anbumani D, vizhi Dhandapani K, Manoharan J, Babujanarthanam R, Bashir AK, Muthusamy K, Alfarhan A, Kanimozhi K (2022) Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. J King Saud Univ Sci 34:101896. https://doi.org/10.1016/j.jksus.2022.101896

    Article  Google Scholar 

  6. Zahra T, Ahmad KS (2022) Functionalization of Mn2O3/PdO/ZnO electrocatalyst using organic template with accentuated electrochemical potential toward water splitting. J Int Energy Res 46:452–463. https://doi.org/10.1002/er.6677

    Article  CAS  Google Scholar 

  7. Ahmad KS, Jaffri SB (2019) Carpogenic ZnO nanoparticles: amplified nanophotocatalytic and antimicrobial action. IET Nanobiotech 13:150–159. https://doi.org/10.1049/iet-nbt.2018.5006

    Article  Google Scholar 

  8. Fulekar J, Dutta DP, Pathak B, Fulekar MH (2018) Novel microbial and root mediated green synthesis of TiO2 nanoparticles and its application in wastewater remediation. J Chem Techno 93:736–743. https://doi.org/10.1002/jctb.5423

    Article  CAS  Google Scholar 

  9. Theerthagiri J, Lee SJ, Murthy AP, Madhavan J, Choi MY (2020) Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr Opinion Solid State Mat Sci 24:100805. https://doi.org/10.1016/j.cossms.2020.100805

    Article  CAS  Google Scholar 

  10. Thirupathy C, Lims SC, Sundaram SJ, Mahmoud AH, Kaviyarasu K (2020) Equilibrium synthesis and magnetic properties of BaFe12O19/NiFe2O4 nanocomposite prepared by co precipitation method. J King Saud Univ Sci 32:1612–1618. https://doi.org/10.1016/j.jksus.2019.12.019

    Article  Google Scholar 

  11. Jayakumar C, Magdalane CM, Kaviyarasu K, Kulandainathan MA, Jeyaraj B, Maaza M (2018) Direct electrodeposition of gold nanoparticles on glassy carbon electrode for selective determination catechol in the presence of hydroquinone. J Nanosci Nanotechnol 18:4544–4550. https://doi.org/10.1166/jnn.2018.15307

    Article  CAS  PubMed  Google Scholar 

  12. Ahmad KS, Jaffri SB (2018) Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators. Open Chem 16:556–570. https://doi.org/10.1515/chem-2018-0060

    Article  CAS  Google Scholar 

  13. Lee SJ, Theerthagiri J, Nithyadharseni P, Arunachalam P, Balaji D, Kumar AM, Madhavan J, Mittal V, Choi MY (2021) Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew Sust Energy Rev 143:110849. https://doi.org/10.1016/j.rser.2021.110849

    Article  CAS  Google Scholar 

  14. Shreyanka SN, Theerthagiri J, Lee SJ, Yu Y, Choi MY (2022) Multiscale design of 3D metal–organic frameworks (M− BTC, M: Cu Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting. J Chem Engg 446:137045. https://doi.org/10.1016/j.cej.2022.137045

    Article  CAS  Google Scholar 

  15. Zahra T, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA, Jaffri SB, Ali D (2021) Electro-catalyst [ZrO2/ZnO/PdO]-NPs green functionalization: fabrication, characterization and water splitting potential assessment. J Int Hydrogen Energy 46:19347–19362. https://doi.org/10.1016/j.ijhydene.2021.03.094

    Article  CAS  Google Scholar 

  16. Yu Y, Lee SJ, Theerthagiri J, Fonseca S, Pinto LM, Maia G, Choi MY (2022) Reconciling of experimental and theoretical insights on the electroactive behavior of C/Ni nanoparticles with AuPt alloys for hydrogen evolution efficiency and Non-enzymatic sensor. J Chem Engg 435:134790. https://doi.org/10.1016/j.cej.2022.134790

    Article  CAS  Google Scholar 

  17. Jaffri SB, Ahmad KS (2018) Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles. Envir Tech 40:3745–3761. https://doi.org/10.1080/09593330.2018.1488888

    Article  CAS  Google Scholar 

  18. Yu Y, Theerthagiri J, Lee SJ, Muthusamy G, Ashokkumar M, Choi MY (2021) Integrated technique of pulsed laser irradiation and sonochemical processes for the production of highly surface-active NiPd spheres. J Chem Engg 411:128486. https://doi.org/10.1016/j.cej.2021.128486

    Article  CAS  Google Scholar 

  19. Jaffri SB, Ahmad KS (2021) Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells. Critic Rev Solid State Mat Sci 46:251–279. https://doi.org/10.1080/10408436.2020.1758627

    Article  CAS  Google Scholar 

  20. Yu Y, Lee SJ, Theerthagiri J, Lee Y, Choi MY (2022) Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl Catal 316:121603. https://doi.org/10.2139/ssrn.4082337

    Article  CAS  Google Scholar 

  21. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA, Iram S (2022) Sustainable hydrothermal synthesis of cobalt-nickel nanomaterial for supercapacitor using green stabilizing agents. J Int Energy Res 46:4599–4608. https://doi.org/10.1002/er.7452

    Article  CAS  Google Scholar 

  22. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Azad MA (2022) Sustainable synthesis of organic framework-derived ZnO nanoparticles for fabrication of supercapacitor electrode. Env Tech 43:605–616. https://doi.org/10.1080/09593330.2020.1797899

    Article  CAS  Google Scholar 

  23. Aygün HH, Alma MH (2020) Bismuth (III) oxide/polyethylene terephthalate nanocomposite fiber coated polyester spunbonds for ionizing radiation protection. Appl Phys A 126:1–8. https://doi.org/10.1007/s00339-020-03880-0

    Article  CAS  Google Scholar 

  24. Al-Attiyah KH, Hashim A, Obaid SF (2018) Synthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applications. J Bionanosci 12:200–205. https://doi.org/10.1166/jbns.2018.1526

    Article  CAS  Google Scholar 

  25. Hosseini SH, Noushin Ezzati S, Askari M (2015) Synthesis, characterization and X-ray shielding properties of polypyrrole/lead nanocomposites. Polymer Adv Tech 26:561–568. https://doi.org/10.1002/pat.3486

    Article  CAS  Google Scholar 

  26. Kuang X, Payne JL, Johnson MR, Radosavljevic Evans I (2012) Remarkably high oxide ion conductivity at low temperature in an ordered fluorite-type superstructure. Ang Chem Int Ed 51:690–694. https://doi.org/10.1002/anie.201106111

    Article  CAS  Google Scholar 

  27. Yang S, Nie Y, Zhang B, Tang X, Mao H (2020) Construction of Er-doped ZnO/SiO2 composites with enhanced antimicrobial properties and analysis of antibacterial mechanism. Ceram Int 46:20932–20942. https://doi.org/10.1016/j.ceramint.2020.05.149

    Article  CAS  Google Scholar 

  28. Zahra T, Ahmad KS, Zequine C, Thomas AG, Gupta RK, Azad Malik M, Jaffri SB, Ali D (2021) Semi-conducting Ni/Zn nano-hybrids’ driven efficient electro-catalytic performance: fabrication, characterization, and electrochemical features’ elucidation. Green Chem Lett Rev 14:286–301. https://doi.org/10.1080/17518253.2021.1910735

    Article  CAS  Google Scholar 

  29. Das PE, Majdalawieh AF, Abu-Yousef IA, Narasimhan S, Poltronieri P (2020) Use of a hydroalcoholic extract of Moringa oleifera leaves for the green synthesis of bismuth nanoparticles and evaluation of their anti-microbial and antioxidant activities. Mat 13:876. https://doi.org/10.3390/ma13040876

    Article  CAS  Google Scholar 

  30. Lovett AJ, Wells MP, He Z, Lu J, Wang H, MacManus-Driscoll JL (2022) High ionic conductivity in fluorite δ-bismuth oxide-based vertically aligned nanocomposite thin films. J Mat Chem A 10:3478–3484. https://doi.org/10.1039/D1TA07308G

    Article  CAS  Google Scholar 

  31. Suresh M, Sivasamy A (2018) Bismuth oxide nanoparticles decorated graphene layers for the degradation of methylene blue dye under visible light irradiations and antimicrobial activities. J Envir Chem Eng 6:3745–3756. https://doi.org/10.1016/j.jece.2017.01.049

    Article  CAS  Google Scholar 

  32. Chen J, Zhan J, Li Q (2019) Exploration and crystal phase engineering from bismuthinite ore to visible-light responsive photocatalyst of Bi2O3. J Envir Chem Eng 7:103375. https://doi.org/10.1016/j.jece.2019.103375

    Article  CAS  Google Scholar 

  33. Mehrara R, Malekie S, Kotahi SM, Kashian S (2021) Introducing a novel low energy gamma ray shield utilizing polycarbonate bismuth oxide composite. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-89773-5

    Article  CAS  Google Scholar 

  34. Zhou Y, Zhang H, Cheng Z, Wang H (2022) Regulation of the PI3K/AKT/mTOR signaling pathway with synthesized bismuth oxide nanoparticles from Ginger (Zingiber officinale) extract: mitigating the proliferation of colorectal cancer cells. J Arab Chem 15:103607. https://doi.org/10.1016/j.arabjc.2021.103607

    Article  CAS  Google Scholar 

  35. Han K, Zhang Y, Fang Z, Cheng T, Gao M (2007) A simple route to preparation and characterization of Er2O3 microspheres. Chem Lett 36:1124–1125. https://doi.org/10.1246/cl.2007.1124

    Article  CAS  Google Scholar 

  36. Irfan M, Aslam M, Raza ZA (2022) Gamma irradiation protection via flexible polypyrrole coated bismuth oxide nanocomposites. Polymer Bull 1–17. https://doi.org/10.1007/s00289-021-04052-7

  37. Alves GA, Centurion HA, Sambrano JR, Ferrer MM, Gonçalves RV (2020) Band gap narrowing of Bi-doped NaTaO3 for photocatalytic hydrogen evolution under simulated sunlight: a pseudocubic phase induced by doping. ACS Appl Energy Mater 4:671–679. https://doi.org/10.1021/acsaem.0c02547

    Article  CAS  Google Scholar 

  38. Chikhale LP, Patil JY, Shaikh FI, Rajgure AV, Pawar RC, Mulla IS, Suryavanshi SS (2014) Effect of Bi doping on structural, morphological, optical and ethanol vapor response properties of SnO2 nanoparticles. Mater Sci Semicond Process 27:121–129. https://doi.org/10.1016/j.mssp.2014.06.024

    Article  CAS  Google Scholar 

  39. Patwari R, Eraiah B (2019) Optical and plasmonic properties of Er3+ and silver co-doped borate nano-composite glasses. Mat Res Exp 6:116218. https://doi.org/10.1088/2053-1591/ab4f93

    Article  Google Scholar 

  40. Chanda D, Kannan K, Gautam J, Meshesha MM, Jang SG, Dinh VA, Yang BL (2022) Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis. Appl Catal B 321:122039. https://doi.org/10.1016/j.apcatb.2022.122039

    Article  CAS  Google Scholar 

  41. Kannan K, Chanda D, Gautam J, Meshesha MM, Jang SG, Yang BL (2022) Facial synthesis of pp heterojunction composites: evaluation of their electrochemical properties with photovoltaics-electrolyzer water splitting using two-electrode system. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2022.12.235

    Article  Google Scholar 

  42. Ahn HS, Tilley TD (2013) Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 anode. Adv Funct Mat 23:227–233. https://doi.org/10.1002/adfm.201200920

    Article  CAS  Google Scholar 

  43. Han A, Chen H, Sun Z, Xu J, Du P (2015) High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors. Chem Comm 51:11626–11629. https://doi.org/10.1039/C5CC02626A

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Xue Y, Yan X, Yan W, Cheng Q, Xie Y (2012) Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5:521–530. https://doi.org/10.1007/s12274-012-0237-y

    Article  CAS  Google Scholar 

  45. Azhar S, Ahmad KS, Abrahams I, Lin W, Gupta RK, Mazhar M, Ali D (2021) Phyto-inspired Cu/Bi oxide-based nanocomposites: synthesis, characterization, and energy relevant investigation. RSC Adv 11:30510–30519. https://doi.org/10.1039/D1RA05066D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Z, Zeng S, Liu W, Wang X, Li Q, Zhao Z, Geng F (2018) Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl Mat Interf 9:1488–1495. https://doi.org/10.1021/acsami.6b13075

    Article  CAS  Google Scholar 

  47. Wu X, Han X, Ma X, Zhang W, Deng Y, Zhong C, Hu W (2017) Morphology-controllable synthesis of Zn–Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc–air batteries and water electrolysis. ACS Appl Mat Interf 9:12574–12583. https://doi.org/10.1021/acsami.6b16602

    Article  CAS  Google Scholar 

  48. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267. https://doi.org/10.1039/C1SC00117E

    Article  CAS  Google Scholar 

  49. Liu B, Qu S, Kou Y, Liu Z, Chen X, Wu Y, Han X, Deng Y, Hu W, Zhong C (2018) In situ electrodeposition of cobalt sulfide nanosheet arrays on carbon cloth as a highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. ACS Appl Mat Interf 10:30433–304340. https://doi.org/10.1021/acsami.8b10645

    Article  CAS  Google Scholar 

  50. Wang J, Xu F, Jin H, Chen Y, Wang Y (2021) Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mat 14:1605838. https://doi.org/10.1002/adma.201605838

    Article  CAS  Google Scholar 

  51. Gautam J, Kannan K, Meshesha MM, Dahal B, Subedi S, Ni L, Wei Y, Yang BL (2022) Heterostructure of polyoxometalate/zinc-iron-oxide nanoplates as an outstanding bifunctional electrocatalyst for the hydrogen and oxygen evolution reaction. J Coll Int Sci 618:419–430. https://doi.org/10.1016/j.jcis.2022.03.103

    Article  CAS  Google Scholar 

  52. Brounen D, Kok N, Quigley JM (2021) Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage. Energy 218:119502. https://doi.org/10.1016/j.energy.2020.119502

    Article  CAS  Google Scholar 

  53. Manjunatha AS, Pavithra NS, Shivanna M, Nagaraju G, Ravikumar CR (2020) Synthesis of Citrus limon mediated SnO2-WO3 nanocomposite: applications to photocatalytic activity and electrochemical sensor. J Envir Chem Eng 8:104500. https://doi.org/10.1016/j.jece.2020.104500

    Article  CAS  Google Scholar 

  54. Liang M, Zhang Z, Long R, Wang Y, Yu Y, Pei Y (2020) Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen. Envir Poll 259:113770. https://doi.org/10.1016/j.envpol.2019.113770

    Article  CAS  Google Scholar 

  55. Tran HD, Le AH, Tran UP (2021) Preparation of electrode material based to bismuth oxide-attached multiwalled carbon nanotubes for lead (II) ion determination. J Nanomat 1–14. https://doi.org/10.1155/2021/4702995

  56. Chinnaiah K, Kannan K, Sivaganesh D, Gurushankar K (2022) Electrochemical performance and charge density distribution analysis of ag/NiO nanocomposite synthesized from Withania somnifera leaf extract. Inorganic Chem Comm 141:109580. https://doi.org/10.1016/j.inoche.2022.109580

    Article  CAS  Google Scholar 

  57. Nagaraj G, Chinnaiah K, Kannan K, Gurushankar K (2022) Nano-sized neem plant particles as an electrode for electrochemical storage applications. Ionics 28:3787–3797. https://doi.org/10.1007/s11581-022-04618-z

    Article  CAS  Google Scholar 

  58. Chinnaiah K, Krishnamoorthi R, Kannan K, Sivaganesh D, Saravanakumar S, Theivasanthi T, Palko N, Grishina M, Maik V, Gurushankar K (2022) Ag nanoparticles synthesized by Datura metel L. Leaf extract and their charge density distribution, electrochemical and biological performance. Chem Phys Lett 807:140083. https://doi.org/10.1016/j.cplett.2022.140083

    Article  CAS  Google Scholar 

  59. Chinnaiah K, Kannan K, Sivaganesh D, Gurushankar K (2022) Electrical and electrochemical characteristics of Withania somnifera leaf extract incorporation sodium alginate polymer film for energy storage applications. J Inorg Organomet Polym Mat 1:3787–3797. https://doi.org/10.1007/s11581-022-04618-z

    Article  CAS  Google Scholar 

  60. Gujar TP, Shinde VR, Lokhande CD, Han SH (2006) Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sourc 161:1479–1485. https://doi.org/10.1016/j.jpowsour.2006.05.036

    Article  CAS  Google Scholar 

  61. Veeralakshmi S, Kalaiselvam S, Murugan R, Pandurangan P, Nehru S, Sakthinathan S, Chiu TW (2020) An approach to develop high performance supercapacitor using Bi2O3 based binary and ternary nanocomposites. J Mat Sci Mat Elect 31:22417–22426. https://doi.org/10.1007/s10854-020-04743-3

    Article  CAS  Google Scholar 

  62. Wang SX, Jin CC, Qian WJ (2014) Bi2O3 with activated carbon composite as a supercapacitor electrode. J Alloys Comp 615:12–17. https://doi.org/10.1016/j.jallcom.2014.06.149

    Article  CAS  Google Scholar 

  63. Guo Y, Zhang X, Zhang R, Li A, Zhang J, He H (2023) Polyvinylpyrrolidone-modified Bi2O3 and Bi2S3 nanocomposites for improved supercapacitive performance. J Mat Sci Mat Elect 34:670. https://doi.org/10.1007/s10854-023-10114-5

    Article  CAS  Google Scholar 

  64. Anand GT, Renuka D, Ramesh R, Anandaraj L, Sundaram SJ, Ramalingam G, Magdalane CM, Bashir AK, Maaza M, Kaviyarasu K (2019) Green synthesis of ZnO nanoparticle using Prunus dulcis (almond gum) for antimicrobial and supercapacitor applications. Surf Interf 17:100376. https://doi.org/10.1016/j.surfin.2019.100376

    Article  CAS  Google Scholar 

  65. Kaviyarasu K, Maaza MM, Manikandan E, Kennedy J (2016) Rice husks as a sustainable source of high quality nanostructured silica for high performance Li-ion battery requital by sol-gel method–a review. Adv Mat Lett 7:684–696. https://doi.org/10.5185/amlett.2016.6192

    Article  CAS  Google Scholar 

  66. Kombaiah K, Vijaya JJ, Kennedy LJ, Bououdina M, Kaviyarasu K, Ramalingam RJ, Munusamy MA, AlArfaj A (2017) Effect of Cd2+ concentration on ZnFe2O4 nanoparticles on the structural, optical and magnetic properties. Optik 135:190–199. https://doi.org/10.1016/j.ijleo.2017.01.066

    Article  CAS  Google Scholar 

  67. Kombaiah K, Vijaya JJ, Kennedy LJ, Bououdina M, Ramalingam RJ, Al-Lohedan HA (2017) Comparative investigation on the structural, morphological, optical, and magnetic properties of CoFe2O4 nanoparticles. Ceram Int 43:7682–7689. https://doi.org/10.1016/j.ceramint.2017.03.069

    Article  CAS  Google Scholar 

  68. Fuku X, Kaviyarasu K, Matinise N, Maaza M (2016) Punicalagin green functionalized Cu/Cu2 \O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res Lett 11:1–12. https://doi.org/10.1186/s11671-016-1581-8

    Article  CAS  Google Scholar 

  69. Kaviyarasu K, Manikandan E, Maaza M (2015) Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance. J Alloys Comp 648:559–563. https://doi.org/10.1016/j.jallcom.2015.06.010

    Article  CAS  Google Scholar 

  70. Siraj H, Ahmad KS, Jaffri SB, Sohail M (2020) Synthesis, characterization and electrochemical investigation of physical vapor deposited barium sulphide doped iron sulphide dithiocarbamate thin films. Microelect Eng 233:111400. https://doi.org/10.1016/j.mee.2020.111400

    Article  CAS  Google Scholar 

  71. Richard C, Viana B (2022) Persistent X-ray-activated phosphors: mechanisms and applications. Light Sci Appli 11:123. https://doi.org/10.1038/s41377-022-00808-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this work are highly grateful to the Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000, Rawalpindi, Pakistan, and the Queen Mary University of London, the United Kingdom for providing the technical facilities needed for the completion of this work. Also, the authors want to acknowledge the Higher Education Commission, Pakistan for resource provisioning. The authors extend their appreciation to Researchers Supporting Project number RSP2023R165, King Saud University, Riyadh, Saudi Arabia.

Funding

The Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000, Rawalpindi, Pakistan, and the Higher Education Commission, Pakistan, provided the financial facilities needed for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, S., Ahmad, K.S., Abrahams, I. et al. Biomimetic [AV-Er2O3-doped δ-Bi2O3]-stacked nanoplates: an efficient electrocatalyst for OER/HER and electrode material for supercapacitor application. Ionics 29, 2485–2500 (2023). https://doi.org/10.1007/s11581-023-05002-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05002-1

Keywords

Navigation