Skip to main content
Log in

Investigation of structural, optical, and electrical properties of LiMg2Fe3O7 spinel ferrite

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The \(Li{Mg}_{2}{Fe}_{3}{O}_{7}\) compounds were prepared by via the citrate process and sintered at two different temperatures to study their effect on structural, morphological, optical, and electric properties. The X-ray diffraction analysis revealed that both samples crystallized in a cubic spinel structure belonging to space group \(Fd\overline{3 }m\). Increasing the sintering temperature led to an increase in the grain size as characterized by SEM. The UV–visible spectroscopy revealed that the band gap is \(2.5\mathrm{ eV}\) and \(2.35\mathrm{ eV}\) for \(Mg700\) and \(Mg1100\), respectively, which confirm that these compounds are potential candidates for optoelectronics. The electrical resistance was found to decrease with the increase in the sintering temperature, consequently leading to a rise in conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang Y, Yang Z, Yin D et al (2010) Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater 322:3470–3475

    Article  CAS  Google Scholar 

  2. Gharibshahian M, Mirzaee O, Nourbakhsh MS (2017) Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. J Magn Magn Mater 425:48–56

    Article  CAS  Google Scholar 

  3. Raghuvanshi S, Kane SN, Tatarchuk TR, Mazaleyrat F (2018) Effect of Zn addition on structural, magnetic properties, antistructural modeling of Co1−xZnxFe2O4 nano ferrite. Bikaner, India, p 030055

    Google Scholar 

  4. Ahmed MA, Hassan HE, Eltabey MM et al (2018) Mössbauer spectroscopy of MgxCu0. 5-xZn0. 5Fe2O4 (x= 0.0, 0.2 and 0.5) ferrites system irradiated by γ-rays. Physica B 530:195–200

    Article  CAS  Google Scholar 

  5. Tatarchuk T, Bououdina M, Macyk W et al (2017) Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 12:1–11

    Article  CAS  Google Scholar 

  6. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111

    Article  CAS  Google Scholar 

  7. Ahmad T, Bae H, Iqbal Y et al (2015) Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging. J Magn Magn Mater 381:151–157

    Article  CAS  Google Scholar 

  8. Yang M, Jeong J-M, Lee KG et al (2017) Hierarchical porous microspheres of the Co3O4@ graphene with enhanced electrocatalytic performance for electrochemical biosensors. Biosens Bioelectron 89:612–619

    Article  CAS  Google Scholar 

  9. Zhao M, Fan S, Liang J et al (2015) Synthesis of mesoporous grooved ZnFe2O4 nanobelts as peroxidase mimetics for improved enzymatic biosensor. Ceram Int 41:10400–10405

    Article  CAS  Google Scholar 

  10. Tatarchuk T, Shyichuk A, Sojka Z et al (2021) Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb (II) adsorption and magnetic hyperthermia applications. J Mol Liq 328:115375

    Article  CAS  Google Scholar 

  11. Tatarchuk T, Bououdina M, Al-Najar B, Bitra RB (2019) Green and ecofriendly materials for the remediation of inorganic and organic pollutants in water. In: Naushad Mu (ed) A new generation material graphene: applications in water technology. Springer International Publishing, Cham, pp 69–110

    Chapter  Google Scholar 

  12. Tatarchuk T, Al-Najar B, Bououdina M, Ahmed MA (2019) Catalytic and photocatalytic properties of oxide spinels. Handbook of ecomaterials 3:1701–1750

    Article  Google Scholar 

  13. Liu Y, Hsu J, Fu Y, Tsai K (2016) Preparation of Cu–Zn ferrite photocatalyst and it’s application. Int J Hydrogen Energy 41:15696–15702

    Article  CAS  Google Scholar 

  14. Karthik K, Dhanuskodi S, Gobinath C et al (2017) Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. J Mater Sci: Mater Electron 28:11420–11429

    CAS  Google Scholar 

  15. Abdel-Hamid Z, Rashad MM, Mahmoud SM, Kandil AT (2017) Electrochemical hydroxyapatite-cobalt ferrite nanocomposite coatings as well hyperthermia treatment of cancer. Mater Sci Eng, C 76:827–838

    Article  CAS  Google Scholar 

  16. Wang G, Zhao D, Ma Y et al (2018) Synthesis and characterization of polymer-coated manganese ferrite nanoparticles as controlled drug delivery. Appl Surf Sci 428:258–263

    Article  CAS  Google Scholar 

  17. Kombaiah K, Vijaya JJ, Kennedy LJ et al (2018) Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Mater Chem Phys 204:410–419

    Article  CAS  Google Scholar 

  18. Satheeshkumar MK, Kumar ER, Srinivas C et al (2019) Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. J Magn Magn Mater 484:120–125

    Article  CAS  Google Scholar 

  19. Deepty M, Srinivas C, Kumar ER et al (2019) XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram Int 45:8037–8044

    Article  CAS  Google Scholar 

  20. Deepty M, Srinivas C, Babu KV et al (2018) Structural and electron spin resonance spectroscopic studies of MnxZn1- xFe2O4 (x= 0.5, 0.6, 0.7) nanoferrites synthesized by sol-gel auto combustion method. J Magn Magn Mater 466:60–68

    Article  CAS  Google Scholar 

  21. Giri AK, Kirkpatrick EM, Moongkhamklang P et al (2002) Photomagnetism and structure in cobalt ferrite nanoparticles. Appl Phys Lett 80:2341–2343

    Article  CAS  Google Scholar 

  22. Bouokkeze D, Massoudi J, Hzez W et al (2019) Investigation of the structural, optical, elastic and electrical properties of spinel LiZn2Fe3O8 nanoparticles annealed at two distinct temperatures. RSC Adv 9:40940–40955. https://doi.org/10.1039/C9RA07569K

    Article  CAS  Google Scholar 

  23. Benali EM, Benali A, Bejar M et al (2020) Effect of annealing temperature on structural, morphological and dielectric properties of La0.8Ba0.1Ce0.1FeO3 perovskite. J Mater Sci: Mater Electron 31:16220–16234. https://doi.org/10.1007/s10854-020-04140-w

    Article  CAS  Google Scholar 

  24. Massoudi J, Smari M, Nouri K et al (2020) Magnetic and spectroscopic properties of Ni–Zn–Al ferrite spinel: from the nanoscale to microscale. RSC Adv 10:34556–34580

    Article  CAS  Google Scholar 

  25. Massoudi J, Messaoudi O, Gharbi S et al (2022) Magnetocaloric effect, dielectric relaxor behavior, and evidence for direct magnetodielectric behavior in Ni0. 6Zn0. 4Al0. 5Fe1. 5O4 ceramics for high-temperature applications. J Phys Chem C 126:2857–2867

    Article  CAS  Google Scholar 

  26. Massoudi J, Smari M, Khirouni K et al (2021) Impact of particle size on the structural and smagnetic properties of superparamagnetic Li-ferrite nanoparticles. J Magn Magn Mater 528:167806. https://doi.org/10.1016/j.jmmm.2021.167806

    Article  CAS  Google Scholar 

  27. Lahouli R, Massoudi J, Smari M et al (2019) Investigation of annealing effects on the physical properties of Ni 0.6 Zn 0.4 Fe 1.5 Al 0.5 O 4 ferrite. RSC Adv 9:19949–19964

    Article  CAS  Google Scholar 

  28. Massoudi J, Bouekkeze D, Bougoffa A et al (2020) Structural, elastic, optical and dielectric properties of Li0.5Fe2.5 O4 nanopowders with different particle sizes. Adv Powder Technol 31:4714–4730

    Article  CAS  Google Scholar 

  29. Gandomi F, Peymani-Motlagh SM, Rostami M et al (2019) Simple synthesis and characterization of Li0.5Fe2.5O4, LiMg0.5Fe2O4 and LiNi0.5Fe2O4, and investigation of their photocatalytic and anticancer properties on hela cells line. J Mater Sci: Mater Electron 30:19691–19702

    CAS  Google Scholar 

  30. Shirsath SE, Kadam RH, Mane ML et al (2013) Permeability and magnetic interactions in Co2+ substituted Li0.5Fe2.5O4 alloys. J Alloy Compd 575:145–151. https://doi.org/10.1016/j.jallcom.2013.04.058

    Article  CAS  Google Scholar 

  31. Mabrouki A, Mnasri T, Bougoffa A et al (2021) Experimental study and DFT calculation of the oxygen deficiency effects on structural, magnetic and optical properties of La0.8□0.2MnO3-δ (δ = 0, 0.1 and 0.2) compounds. J Alloys Compd 860:157922. https://doi.org/10.1016/j.jallcom.2020.157922

    Article  CAS  Google Scholar 

  32. Hajra P, Shyamal S, Mandal H et al (2019) Synthesis of oxygen deficient bismuth oxide photocatalyst for improved photoelectrochemical applications. Electrochim Acta 299:357–365

    Article  CAS  Google Scholar 

  33. Trabelsi H, Bejar M, Dhahri E et al (2019) Oxygen-vacancy-related giant permittivity and ethanol sensing response in SrTiO3-δ ceramics. Physica E 108:317–325. https://doi.org/10.1016/j.physe.2018.12.025

    Article  CAS  Google Scholar 

  34. Vaqueiro P, López-Quintela MA (1998) Synthesis of yttrium aluminium garnet by the citrate gel process. J Mater Chem 8:161–163

    Article  CAS  Google Scholar 

  35. Kim Y-I, Izumi F (1994) Structure refinements with a new version of the Rietveld-Refinement program RIETAN. J Ceram Soc Jpn 102:401–404

    Article  CAS  Google Scholar 

  36. Patil RP, Hankare PP, Garadkar KM, Sasikala R (2012) Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite. J Alloy Compd 523:66–71

    Article  CAS  Google Scholar 

  37. Rahimi M, Kameli P, Ranjbar M, Salamati H (2013) The effect of sintering temperature on evolution of structural and magnetic properties of nanostructured Ni0. 3Zn0. 7Fe2O4 ferrite. J Nanopart Res 15:1–11

    Article  Google Scholar 

  38. Prajapat P, Dhaka S, Mund HS (2021) Investigation of the influence of annealing temperature on the structural and magnetic properties of MgFe2O4. J Electron Mater 50:4671–4677

    Article  CAS  Google Scholar 

  39. Waje SB, Hashim M, Yusoff WDW, Abbas Z (2010) Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0. 5Zn0. 5Fe2O4 prepared using mechanically alloyed nanoparticles. J Magn Magn Mater 322:686–691

    Article  CAS  Google Scholar 

  40. Maaz K, Karim S, Mumtaz A et al (2009) Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater 321:1838–1842

    Article  CAS  Google Scholar 

  41. Gonçalves NS, Carvalho JA, Lima ZM, Sasaki JM (2012) Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater Lett 72:36–38

    Article  Google Scholar 

  42. Kumar ER, Srinivas C, Seehra MS et al (2018) Particle size dependence of the magnetic, dielectric and gas sensing properties of Co substituted NiFe2O4 nanoparticles. Sens Actuators, A 279:10–16

    Article  CAS  Google Scholar 

  43. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  44. Soudani I, Brahim KB, Oueslati A et al (2022) Investigation of structural, morphological, and transport properties of a multifunctional Li-ferrite compound. RSC Adv 12:18697–18708. https://doi.org/10.1039/D2RA02757G

    Article  CAS  Google Scholar 

  45. Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe 2 O 4) by incorporating different cations (M= Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018

    Article  CAS  Google Scholar 

  46. Alagarasan D, Varadharajaperumal S, Kumar KDA et al (2021) Optimization of different temperature annealed nanostructured CdSe thin film for photodetector applications. Opt Mater 122:111706

    Article  CAS  Google Scholar 

  47. Chavan AR, Vinayak V, Rathod SM, Khirade PP (2021) Diverse physical characteristics of mixed Li–Mg spinel ferrite thin films fabricated by spray pyrolysis technique. Physica B 615:413075

    Article  CAS  Google Scholar 

  48. Sahoo D, Priyadarshini P, Aparimita A et al (2020) Role of annealing temperature on optimizing the linear and nonlinear optical properties of As 40 Se 50 Ge 10 films. RSC Adv 10:26675–26685

    Article  CAS  Google Scholar 

  49. Li X, Zhu H, Wei J et al (2009) Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model. Appl Phys A 97:341–344

    Article  CAS  Google Scholar 

  50. Hadded A, Massoudi J, Dhahri E et al (2020) Structural, optical and dielectric properties of Cu1.5Mn1.5O4 spinel nanoparticles. RSC Adv 10:42542–42556. https://doi.org/10.1039/D0RA08405K

    Article  CAS  Google Scholar 

  51. Hannachi L, Bouarissa N (2009) Band parameters for cadmium and zinc chalcogenide compounds. Physica B 404:3650–3654

    Article  CAS  Google Scholar 

  52. Turky AO, Rashad MM, Hassan AM et al (2017) Optical, electrical and magnetic properties of lanthanum strontium manganite La 1–x Sr x MnO3 synthesized through the citrate combustion method. Phys Chem Chem Phys 19:6878–6886

    Article  CAS  Google Scholar 

  53. Ravindra NM, Srivastava VK (1979) Variation of electronic polarizability with energy gap in compound semiconductors. Infrared Phys 19:605–606

    Article  CAS  Google Scholar 

  54. Rahmouni H, Smari M, Cherif B et al (2015) Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La 0.5 Ca 0.5- x Ag x MnO 3 manganites with compositions below the concentration limit of silver solubility in perovskites (0≤ x≤ 0.2). Dalton Trans 44:10457–10466

    Article  CAS  Google Scholar 

  55. Dhahri A, Zaouali A, Benali A et al (2021) Synthesis and study of the structural and dielectric properties of La0. 67Ca0. 2Ba0. 13Fe1- xMnxO3 ferrites (x= 0, 0.03 and 0.06). J Mater Sci: Mater Electron 32:7926–7942

    CAS  Google Scholar 

  56. Benali A, Bejar M, Dhahri E et al (2015) Electrical conductivity and ac dielectric properties of La0. 8Ca0. 2-xPbxFeO3 (x= 0.05, 0.10 and 0.15) perovskite compounds. J Alloy Compd 653:506–512

    Article  CAS  Google Scholar 

  57. Baaziz H, Maaloul NK, Tozri A et al (2015) Effect of sintering temperature and grain size on the electrical transport properties of La0. 67Sr0. 33MnO3 manganite. Chem Phys Lett 640:77–81

    Article  CAS  Google Scholar 

  58. Bharti C, Sinha TP (2011) Structural and ac electrical properties of a newly synthesized single phase rare earth double perovskite oxide: Ba2CeNbO6. Physica B 406:1827–1832

    Article  CAS  Google Scholar 

  59. Dutta A, Bharti C, Sinha TP (2008) Dielectric relaxation in Sr (Mg1/3Nb2/3) O3. Physica B 403:3389–3393

    Article  CAS  Google Scholar 

  60. Abdallah FB, Benali A, Triki M et al (2018) Effect of annealing temperature on structural, morphology and dielectric properties of La0. 75Ba0. 25FeO3 perovskite. Superlattices Microstruct 117:260–270

    Article  CAS  Google Scholar 

  61. Felhi H, Lahouli R, Smari M et al (2019) Study of the structural, electric and dielectric proprieties of Bi1-xNdxMn2O5 (x= 0, x= 0.1 and x= 0.2). J Mol Struct 1179:1–10

    Article  CAS  Google Scholar 

  62. Amghar M, Bougoffa A, Trabelsi A et al (2022) Structural, morphological, and electrical properties of silver-substituted ZnAl 2 O 4 nanoparticles. RSC Adv 12:15848–15860

    Article  CAS  Google Scholar 

  63. Yahya SB, Louati B (2021) Characterization of the structure and conduction behavior of overlapping polaron tunnel of dipotassium zinc orthogermanate. J Alloy Compd 876:159972. https://doi.org/10.1016/j.jallcom.2021.159972

    Article  CAS  Google Scholar 

  64. Louati B, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of LiCaPO4. Ionics 17:633–640

    Article  CAS  Google Scholar 

  65. Nasri M, Henchiri C, Dhahri R et al (2021) Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles. Mater Sci Eng, B 272:115331. https://doi.org/10.1016/j.mseb.2021.115331

    Article  CAS  Google Scholar 

  66. Hamdaoui N, Azizian-Kalandaragh Y, Khlifi M, Beji L (2019) Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol gel method. Ceram Int 45:16458–16465. https://doi.org/10.1016/j.ceramint.2019.05.177

    Article  CAS  Google Scholar 

  67. Pandit AA, Shitre AR, Shengule DR, Jadhav KM (2005) Magnetic and dielectric properties of Mg1+ x Mn x, Fe2- 2x, O4 ferrite system. J Mater Sci 40:423–428

    Article  CAS  Google Scholar 

  68. Hcini S, Selmi A, Rahmouni H et al (2017) Structural, dielectric and complex impedance properties of T0. 6Co0. 4Fe2O4 (T= Ni, Mg) ferrite nanoparticles prepared by sol gel method. Ceram Int 43:2529–2536

    Article  CAS  Google Scholar 

  69. Ravinder D (1999) Effect of sintering temperature on electrical conductivity of mixed lithium–cadmium ferrites. Mater Lett 40:198–203

    Article  CAS  Google Scholar 

  70. Bougoffa A, Benali A, Bejar M et al (2021) Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials. J Alloy Compd 856:157425

    Article  CAS  Google Scholar 

  71. Oumezzine E, Hcini S, Rhouma FIH, Oumezzine M (2017) Frequency and temperature dependence of conductance, impedance and electrical modulus studies of Ni0. 6Cu0. 4Fe2O4 spinel ferrite. J Alloy Compd 726:187–194

    Article  CAS  Google Scholar 

  72. Rahman KR, Chowdhury F-U-Z, Khan MNI (2017) Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0. 25Cu0. 20Zn0. 55AlxFe2-xO4 ferrites synthesized by solid state reaction technique. J Magn Magn Mater 443:366–373

    Article  CAS  Google Scholar 

  73. Devan RS, Kolekar YD, Chougule BK (2006) Effect of cobalt substitution on the properties of nickel–copper ferrite. J Phys: Condens Matter 18:9809

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd daim Jeidd.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeidd, A.d., Bougoffa, A., Benali, A. et al. Investigation of structural, optical, and electrical properties of LiMg2Fe3O7 spinel ferrite. Ionics 29, 603–615 (2023). https://doi.org/10.1007/s11581-022-04838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04838-3

Keywords

Navigation