Skip to main content

Advertisement

Log in

Preparation of layered interconnected Si-Li2MnSiO4 electrode materials for the positive electrode of battery-type capacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Low-energy density limits the development of energy storage in capacitors. The high theoretical capacity and good thermal stability of Li2MnSiO4 help to solve this problem, but its drawbacks of poor electrical conductivity and cycling stability cannot be ignored. Novel structural designs are an effective way to improve the capacity performance and cycling stability of electrode materials. Herein, this study explores the in situ synthesis of Si-Li2MnSiO4 composite from montmorillonite using magnesium heat/hydrothermal method for battery-type capacitors. Li2MnSiO4 is the Pmn21 phase in the synthesized layered graded Si-Li2MnSiO4 (named AMMLMg200), in which Si is mainly compounded with Li2MnSiO4 in the amorphous form. The specific capacitance of the material reaches 381.5 C·g−1 at a current density of 0.5 A·g−1. The presence of the Si layer greatly increases the capacity performance, and the large specific surface area of montmorillonite increases the electrochemical reaction rate. This work proves that AMMLMg200 could be a prospective electrode material for high-performance battery-type capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu SQ, Wu SW, Gao MR, Li MS, Fu XZ, Luo JL (2019) Hollow porous Ag spherical catalysts for highly efficient and selective electrocatalytic reduction of CO2 to CO. ACS Sustain Chem Eng 7(17):14443–14450

    Article  CAS  Google Scholar 

  2. Leder C, Suk M, Lorenz S, Rastogi T, Peifer C, Kietzmann M, Jonas D, Buck M, Pahl A, Kümmerer K (2021) Reducing environmental pollution by antibiotics through design for environmental degradation. ACS Sustain Chem Eng 9(28):9358–9368

    Article  CAS  Google Scholar 

  3. Yi S, Wang L, Zhang X, Li C, Liu W, Wang K, Sun X, Xu Y, Yang Z, Cao Y, Sun J, Ma Y (2021) Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull 66(9):914–924

    Article  CAS  Google Scholar 

  4. An Y, Liu T, Li C, Zhang X, Hu T, Sun X, Wang K, Wang C, Ma Y (2021) A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors. J Mater Chem A 9(28):15654–15664

    Article  CAS  Google Scholar 

  5. Wang L, Zhang X, Xu Y, Li C, Liu W, Yi S, Wang K, Sun X, Wu ZS, Ma Y (2021) Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv Func Mater 31(36):2104286

    Article  CAS  Google Scholar 

  6. Liu Y, Wang W, Wang A (2012) Effect of dry grinding on the microstructure of palygorskite and adsorption efficiency for methylene blue. Powder Technol 225:124–129

    Article  CAS  Google Scholar 

  7. Pothu R, Bolagam R, Wang QH, Ni W, Cai J-F, Peng X-X, Feng YZ, Ma JM (2021) Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met 40(2):353–373

    Article  CAS  Google Scholar 

  8. Xuan C, Li X, Wang Z, Wu H, Tang T, Wen J, Li M, Xiao J (2021) Highly efficient polyaniline trapping and covalent grafting within a three-dimensional porous graphene oxide/helical carbon nanotube skeleton for high-performance flexible supercapacitors. ACS Appl Energy Mater 4(1):523–534

    Article  CAS  Google Scholar 

  9. Li J, Gao JF, He ZH, Li FF, Kong LB (2021) Improving the stable Li+ storage performance by embedding reduced graphene oxide into cobalt gallium oxide as anode for Li-ion capacitor applications. Ionics 27(10):4153–4165

    Article  CAS  Google Scholar 

  10. Zhao RD, Cui D, Sheng HP, Gammer C, Wu FF, Xiang J (2021) Core-shell structured NiCo2O4@ Ni(OH)2 nanomaterials with high specific capacitance for hybrid capacitors. Ionics 27(3):1369–1376

    Article  CAS  Google Scholar 

  11. Liu J, Han E, He Y, Yang X, Qiao S, Tong X, Tian Y, Gao L (2021) Effect of soft template on NiMn-LDH grown on nickel foam for battery-type electrode materials. Ionics 27(4):1451–1463

    Article  CAS  Google Scholar 

  12. Zhang J, Hu J, Liu Y, Jing Q, Yang C, Chen Y, Wang C (2019) Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries. ACS Sustain Chem Eng 7(6):5626–5631

    Article  CAS  Google Scholar 

  13. Zhang W, Sun X, Tang Y, Xia H, Zeng Y, Qiao L, Zhu Z, Lv Z, Zhang Y, Ge X (2019) Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J Am Chem Soc 141(36):14038–14042

    Article  PubMed  CAS  Google Scholar 

  14. Xue L, Savilov SV, Lunin VV, Xia H (2018) Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv Func Mater 28(7):1705836

    Article  CAS  Google Scholar 

  15. Nakhanivej P, Dou Q, Xiong P, Park HS (2021) Two-dimensional pseudocapacitive nanomaterials for high-energy-and high-power-oriented applications of supercapacitors. Acc Mater Res 2(2):86–96

    Article  CAS  Google Scholar 

  16. Zhu H, Deng W, Chen L, Zhang S (2019) Nitrogen doped carbon layer of Li2MnSiO4 with enhanced electrochemical performance for lithium ion batteries. Electrochim Acta 295:956–965

    Article  CAS  Google Scholar 

  17. Wang YC, Zhao SX, Zhai PY, Li F, Nan CW (2014) Solvothermal synthesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries. J Alloy Compd 614:271–276

    Article  CAS  Google Scholar 

  18. Zhai PY, Zhao SX, Cheng HM, Zhao JW, Nan CW (2015) Synthesis and structural stability of Li2. 1Mn0. 9[PO4] 0.1[SiO4] 0.9/C mixed polyanion cathode material for Li-ion battery. Electrochimica Acta 153:217–224

    Article  CAS  Google Scholar 

  19. Kumar N, Singh M, Kumar A, Tseng TY, Sharma Y (2020) Facile and one-step in situ synthesis of pure phase mesoporous Li2MnSiO4/CNTs nanocomposite for hybrid supercapacitors. ACS Appl Energy Mater 3(3):2450–2464

    Article  CAS  Google Scholar 

  20. Yang J, Wang BF, Wang K, Liu Y, Xie JY, Wen ZS (2003) Si/C composites for high capacity lithium storage materials. Electrochem Solid State Lett 6(8):A154

    Article  CAS  Google Scholar 

  21. Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K (2004) A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J Power Sour 129(1):96–100

    Article  CAS  Google Scholar 

  22. Du J, Zhang Y, Lv H, Chen A (2021) Silicate-assisted activation of biomass towards N-doped porous carbon sheets for supercapacitors. J Alloy Compd 853:157091

    Article  CAS  Google Scholar 

  23. Chen X, Wang S, Qiao G, Wang X, Lu G, Cui H, Wang X (2021) Sepiolite/amorphous nickel hydroxide hierarchical structure for high capacitive supercapacitor. J Alloy Compd 881:160519

    Article  CAS  Google Scholar 

  24. Liu Y, Han X, Wang S, Wei B, Li W (2020) Subtle atomistic processes of S-phase formation in Al-Cu-Mg alloys. J Alloy Compd 838:155677

    Article  CAS  Google Scholar 

  25. Aravindan V, Ravi S, Kim WS, Lee SY, Lee YS (2011) Size controlled synthesis of Li2MnSiO4 nanoparticles: effect of calcination temperature and carbon content for high performance lithium batteries. J Colloid Interface Sci 355(2):472–477

    Article  PubMed  CAS  Google Scholar 

  26. Song HJ, Kim JC, Choi M, Choi C, Dar MA, Lee CW, Park S, Kim DW (2015) Li2MnSiO4 nanorods-embedded carbon nanofibers for lithium-ion battery electrodes. Electrochim Acta 180:756–762

    Article  CAS  Google Scholar 

  27. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12(3):1146–1151

    Article  PubMed  CAS  Google Scholar 

  28. Heinz H, Vaia RA, Krishnamoorti R, Farmer BL (2007) Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity. Chem Mater 19(1):59–68

    Article  CAS  Google Scholar 

  29. Lyu H, Gao B, He F, Ding C, Tang J, Crittenden JC (2017) Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustain Chem Eng 5(11):9568–9585

    Article  CAS  Google Scholar 

  30. Zhu H, Deng W, Chen L, Zhang S (2019) Nitrogen doped carbon layer of Li2MnSiO4 with enhanced electrochemical performance for lithium ion batteries. Electrochim Acta 295:956–965

    Article  CAS  Google Scholar 

  31. Gummow RJ, He Y (2014) Recent progress in the development of Li2MnSiO4 cathode materials - ScienceDirect. J Power Sour 253(5):315–331

    Article  CAS  Google Scholar 

  32. Li Y, Tian G, Gong L, Chen B, Liang J (2020) Evaluation of natural sepiolite clay as adsorbents for aflatoxin B1: a comparative study. J Environ Chem Eng 8(4):104052

    Article  CAS  Google Scholar 

  33. Zhao YM, Li H, Zheng, Hao, Wu, Huan, Chen, Li W (2018) Co2SiO4/SiO2/RGO nanosheets: boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element. Electrochim Acta 282:609–617

    Article  CAS  Google Scholar 

  34. Zhang W, Zhang S, Yang L, Chen T (2009) Evolution of Si suboxides into Si nanocrystals during rapid thermal annealing as revealed by XPS and Raman studies. J Cryst Growth 311(5):1296–1301

    Article  CAS  Google Scholar 

  35. Beberwyck BJ, Surendranath Y, Alivisatos AP (2013) Cation exchange: a versatile tool for nanomaterials synthesis. J Phys Chem C 117(39):19759–19770

    Article  CAS  Google Scholar 

  36. Wang C, Xu Y, Wang X, Li L, Zhang B, He S, Chen Y (2019) Insights into the enhanced electrochemical performance of Mn-deficiency Li2Mn(1-x)SiO4/C for Li-ion batteries: experimental and theoretical study. J Power Sour 420:46–53

    Article  CAS  Google Scholar 

  37. Wang Q, Zhang Y, Jia S, Han Y, Xu J, Li F, Meng C (2018) Amorphous manganese silicate anchored on multiwalled carbon nanotubes with enhanced electrochemical properties for high performance supercapacitors. Colloids Surf, A 548:158–171

    Article  CAS  Google Scholar 

  38. Dong X, Yu Y, Jing X, Jiang H, Hu T, Meng C, Huang C, Zhang Y (2021) Sandwich-like honeycomb Co2SiO4/rGO/honeycomb Co2SiO4 structures with enhanced electrochemical properties for high-performance hybrid supercapacitor. J Power Sour 492:229643

    Article  CAS  Google Scholar 

  39. Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10(12):1876–1878

    Article  CAS  Google Scholar 

  40. Krupskaya VV, Zakusin SV, Tyupina EA, Dorzhieva OV, Zhukhlistov AP, Belousov PE, Timofeeva MN (2017) Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals 7(4):49

    Article  CAS  Google Scholar 

  41. Luo X, Qiu R, Chen X, Pei B, Lin J, Wang C (2019) Reversible construction of ionic networks through cooperative hydrogen bonds for efficient ammonia absorption. ACS Sustain Chem Eng 7(11):9888–9895

    Article  CAS  Google Scholar 

  42. Sun KH, Silverman A (2006) Lewis acid-base theory applied to glass. J Am Ceram Soc 28:8–11

    Article  CAS  Google Scholar 

  43. Langmuir I (1919) The arrangement of electrons in atoms and molecules. J Am Chem Soc 41(6):868–934

    Article  CAS  Google Scholar 

  44. Yan J, Huang Y, Chen C, Liu X, Liu H (2019) The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152:545–555

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by research grants from the Natural Science Foundation of Hebei Province (No. E2019202411), Open Subjects Foundation of Linze County (No. 408597), and YuanGuang Scholar Foundation of Hebei University of Technology (No. 280000–121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyan Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Dang, S., Nie, K. et al. Preparation of layered interconnected Si-Li2MnSiO4 electrode materials for the positive electrode of battery-type capacitors. Ionics 28, 5189–5198 (2022). https://doi.org/10.1007/s11581-022-04732-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04732-y

Keywords

Navigation