Skip to main content
Log in

Effect of vinylene carbonate as electrolyte additive for Mn2O3/NiMnO3 anodes of lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study reports for the first time the production and characterization of Mn2O3/NiMnO3 (MO/NMO) powders by the hydrothermal method and the enhanced performance of this electrode upon the addition of 15 vol% vinylene carbonate (VC) into the electrolyte. Cyclic voltammetry and electrochemical impedance spectroscopy tests show that the lithiation mechanism of MO/NMO changes upon the presence of VC in the electrolyte. The galvanostatic tests’ results reveal that when half-cells have been tested with 15 vol% VC-containing electrolyte the anode delivers higher discharge capacity (793 mAh g−1 at 100 mA g−1, 535 mAh g−1 at 400 mA g−1) and capacity retention, in comparison to that of the standard electrolyte. Finally, XRD and post-SEM analyses’ outcomes substantiate that the addition of VC into the standard electrolyte promotes the formation of a stable electrode/electrolyte interface. The improved solid electrolyte interface (SEI) properties caused by VC addition prevent any peel off and/or delamination, resulting in high electrochemical performance over cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu L, Han X, Li J, Hua J, Ouyang MA (2013) Review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  2. Zheng F, Zhu D, Chen Q (2014) Facile fabrication of porous NixCo3−xO4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. ACS Appl Mater 6:9256–9264

    Article  CAS  Google Scholar 

  3. Chen Z, Gao Y, Chen X, Xing B, Zhang C, Wang S, Liu T, Liu Y, Zhang Z (2019) Nanoarchitectured Co3O4/reduced graphane oxide as anode material for lithium-ion batteries with enhanced cycling stability. Ionics 25:5779–5786

    Article  CAS  Google Scholar 

  4. Kim H, Seo DH, Kim H, Park I, Hong J, Park KY, Kang K (2012) Multicomponent effects on the crystal structures and electrochemical properties of spinelstructured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries. Chem Mater 24:720–725

    Article  CAS  Google Scholar 

  5. Li LL, Cheah Y, Ko Y, Teh P, Wee G, Wong CL, Peng SJ, Srinivasan M (2013) The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J Mater Chem A 1:10935–10941

    Article  CAS  Google Scholar 

  6. Li JF, Wang JZ, Wexler D, Shi DQ, Liang JW, Liu HK, Xiong SL, Qian YT (2013) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1:15292–15299

    Article  CAS  Google Scholar 

  7. Li JF, Wang JZ, Liang X, Zhang ZJ, Liu HK, Qian YT, Xiong SL (2013) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl Mater Interfaces 6:24–30

    Article  PubMed  Google Scholar 

  8. Xie Y, Lou XW, Yuan C, Wu HB, Xie Y, Wen X (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504

    Article  Google Scholar 

  9. Chen D, Wang Q, Wang R, Shen G (2015) Ternary oxide nanostructured materials for supercapacitors: a review. J Mater Chem A 3:10158–10173

    Article  CAS  Google Scholar 

  10. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474

    Article  CAS  Google Scholar 

  11. Wang B, Tsang CW, Li KH, Tang Y, Mao Y, Lu XY (2019) Synthesis of sea urchin-like NiCo2O4 via charge-driven self-assembly strategy for high-performance lithium-ion batteries. Nanoscale Res Lett 14:6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Zhuo M, Deng J, Xu Z, Li Q, Wang T (2014) Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo2O4 nanoplates for lithium-ion batteries. J Mater Chem A 2:4449–4456

    Article  CAS  Google Scholar 

  13. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Aricò WS, A. (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

  14. Rezqita A, Sauer M, Foelske A, Kronberger H, Trifonova A (2017) The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries. Electrochim Acta 247:600–609

    Article  CAS  Google Scholar 

  15. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfart-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281

    Article  CAS  Google Scholar 

  16. Abraham KM (1993) Directions in secondary lithium battery research and development. Electrochim Acta 38:1233–1248

    Article  CAS  Google Scholar 

  17. Wang W, Yang S (2017) Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive. J Alloys Compd 695:3249–3255

    Article  CAS  Google Scholar 

  18. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim Acta 47:1423–1439

    Article  CAS  Google Scholar 

  19. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394

    Article  CAS  Google Scholar 

  20. Xu SD, Zhuang QC, Wang J, Xu YQ, Zhu YB (2013) New insight into vinyl ethylene carbonate as a film forming additive to ethylene carbonate-based electrolytes for lithium ion batteries. Int J Electrochem Sci 8:8058–8076

    CAS  Google Scholar 

  21. Chen X, Li X, Mei D, Feng J, Hu MY, Hu J, Engelhard M, Zheng J, Xu W, Xiao J, Liu J, Zhang JG (2014) Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode. Chem Sus Chem 7:549–554

    Article  CAS  Google Scholar 

  22. Kennedy T, Brandon M, Laffir F, Ryan KM (2017) Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes. J Power Sources 359:601–610

    Article  CAS  Google Scholar 

  23. Jeong SK, Inaba M, Mogi R, Iriyama Y, Abe T, Ogumi Z (2001) Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions. Langmuir 17(26):8281–8286

    Article  CAS  Google Scholar 

  24. Ota H, Sakata Y, Inoue A, Yamaguchi S (2004) Analysis of vinylene carbonate derived SEI layers on graphite anode. J Electrochem Soc 151:A1659–A1669

    Article  CAS  Google Scholar 

  25. Profatilova IA, Stock C, Schmitz A, Passerini S, Winter MJ (2013) Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate. J Power Sources 222:140–149

    Article  CAS  Google Scholar 

  26. Chen L, Wang K, Xie X, Xie J (2007) Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J Power Sources 174:538–543

    Article  CAS  Google Scholar 

  27. Schroder K, Alvarado J, Yersak TA, Li J, Dudney N, Webb LJ, Meng YS, Stevenson KJ (2015) The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem Mater 27:5531–5542

    Article  CAS  Google Scholar 

  28. Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S, Klose M, Stephani G, Hauser R, Eckert J, Giebeler L (2017) Lifetime vs. rate capability: understanding the role of FEC and VC in high energy Li-ion batteries with nano-silicon anodes. Energy Storage Mater 6:26–35

    Article  Google Scholar 

  29. Nie M, Demeaux J, Young BT, Heskett DR, Chen Y, Bose A, Woicik JC, Lucht BL (2015) Effect of vinylene carbonate and fluoroethylene carbonate on SEI formation on graphitic anodes in Li-ion batteries. J Electrochem Soc 162(13):A7008–A7014

    Article  CAS  Google Scholar 

  30. Zhang X, Fan C, Xiao P, Han S (2016) Effect of vinylene carbonate on electrochemical performance and surface chemistry of hard carbon electrodes in lithium ion cells operated at different temperatures. Electrochim Acta 222:221–231

    Article  CAS  Google Scholar 

  31. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76

    Article  CAS  Google Scholar 

  32. Dalavi S, Guduru P, Lucht BL (2012) Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J Electrochem Soc 159:A642–A646

    Article  CAS  Google Scholar 

  33. El Ouatani L, Dedryvère R, Siret C, Biensan P, Reynaud S, Iratçabal P (2009) Gonbeau D, The effect of vinylene carbonate additive on surface film formation on both electrodes in Li ion batteries. J Electrochem Soc 156:A103–A113

    Article  Google Scholar 

  34. Lee H, Wang Y, Wan C (2005) The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries. J Appl Electrochem 35:615–623

    Article  CAS  Google Scholar 

  35. Wang Y, Balbuena PB (2002) Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: density functional theory studies. J Phys Chem B 106:4486–4495

    Article  CAS  Google Scholar 

  36. Qian Y, Schultz C, Niehoff P, Schwieters T, Nowak S, Schappacher FM (2016) Winter M Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells. J Power Sources 332(15):60–71

    Article  CAS  Google Scholar 

  37. Ren F, Zuo W, Yang X, Min Lin XL, Zhao W, Zheng S, Yang Y (2019) Comprehensive understanding of reduction mechanisms of ethylene sulfite in EC-based lithium-ion batteries. J Phys Chem C 123:5871–5880

    Article  CAS  Google Scholar 

  38. Bhagwan J, Rani S, Sivasankaran V, Yadav KL, Sharma Y (2017) Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio nanofibers of spinel-NiMn2O4. Appl Surf Sci 426:913–923

    Article  CAS  Google Scholar 

  39. Ma Y, Tai CW, Younesi R, Gustafsson T, Lee JY, Edstro¨m K (2015) Iron doping in spinel NiMn2O4: stabilization of the mesoporous cubic phase and kinetics activation toward highly reversible Li+ storage. Chem Mater 27:7698–7709

    Article  CAS  Google Scholar 

  40. Chen CH, Liu J, Amine K (2001) Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries. J Power Sources 96(2):321–328

    Article  CAS  Google Scholar 

  41. Petibon R, Aiken CP, Sinha NN, Burns JC, Ye H, VanElzen CM, Jain G, Trussler S, Dahn JR (2013) Study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. J Electrochem Soc 160(1):A117–A124

    Article  CAS  Google Scholar 

  42. Su J, Liang H, Gong XN, Lv XY, Long YF, Wen YX (2017) Fast preparation of porous MnO/C microspheres as anode materials for lithium-ion batteries. Nanomater 7(6):121

    Article  Google Scholar 

  43. Xiong DJ, Burns JC, Smith AJ, Sinha N, Dahn JR (2011) A high precision study of the effect of vinylene carbonate (VC) additive in Li/graphite cells. J Electrochem Soc 158(12):A1431–A1435

    Article  CAS  Google Scholar 

  44. Zhao D, Xiao Y, Wang X, Gao Q, Cao M (2014) Ultra-high lithium storage capacity achieved by porous ZnFe2O4/α-Fe2O3 micro-octahedrons. Nano Energy 7:124–133

    Article  CAS  Google Scholar 

  45. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904

    Article  CAS  Google Scholar 

  46. Xiao Y, Zai J, Qian X (2017) Design and synthesis of the composites of multiporous NiMnO3 micro-nano structure spheres and graphene with alleviated side reaction and enhanced performances as anode materials for lithium ion batteries. J Alloys Compd 716:270–277

    Article  CAS  Google Scholar 

  47. Chandel S, Lee S, Kim S, Singh SP, Gim J, Kim J, Rai AK (2019) Structural and electrochemical behavior of a NiMnO3/Mn2O3 nanocomposite as an anode for high rate and long cycle lithium ion batteries. New J Chem 43:12916–12922

    Article  CAS  Google Scholar 

  48. Xu D, Kang Y, Wang J, Hu S, Shi Q, Lu Z, He D, Zhao Y, Qian Y, Lou H, Deng Y (2019) Exploring synergetic effects of vinylene carbonate and 1,3-propane sultone on LiNi0.6Mn0.2Co0.2O2/graphite cells with excellent high-temperature performance. J Power Sources 437:226929

    Article  CAS  Google Scholar 

  49. Chen M, Xi X, Qi M, Yuan J, Yin J, Chen Q (2015) Controllable synthesis of hierarchical porous nickel oxide sheets arrays as anode for high-performance lithium ion batteries. Electrochim Acta 184:17–23

    Article  CAS  Google Scholar 

  50. Xing W (1997) Study of irreversible capacities for Li insertion in hard and graphitic carbons. J Electrochem Soc 144(1997):1195–1201

    Article  CAS  Google Scholar 

  51. Guo J, Wen Z, Wu M, Jin J, Liu Y (2015) Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem Commun 51:59–63

    Article  CAS  Google Scholar 

  52. Xu Z, Zhao K, Gan Q, Liu S, He Z (2018) Hierarchical Co3O4@C hollow microspheres with high capacity as an anode material for lithium-ion batteries. Ionics 24:3757–3769

    Article  CAS  Google Scholar 

  53. Mo Y, Ru Q, Song X, Hu S, Guo L, Chen X (2015) 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries. Electrochim Acta 176:575–585

    Article  CAS  Google Scholar 

  54. Zhang S, He M, Su C, Zhang Z (2016) Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Curr Opin Chem Eng 13:24–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Talip Alp for carefully reading the manuscript and useful suggestions. The authors thank Prof. Dr. Ozgul Keles, Prof. Dr. Kursat Kazmanlı, Dr. Fatma Unal (Istanbul Technical University); Dr. Ozgenur Kahvecioglu (Argonne National Lab); Murat Coşkun (NanoSpek Nano Teknolojik ve Spektral Sistemler Tic. Ltd. Sti); Bahadır Bayrak (Terralab San. Tic. A.Ş.); and Tayfun Ozmen (Atomika Teknik Ltd. Sti) for their helps in characterizations. The authors also thank Regenerative and Restorative Medicine Research Center (REMER) of Istanbul Medipol University for SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Deniz Karahan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solmaz, R., Karahan, B.D. Effect of vinylene carbonate as electrolyte additive for Mn2O3/NiMnO3 anodes of lithium-ion batteries. Ionics 27, 2813–2824 (2021). https://doi.org/10.1007/s11581-021-04044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04044-7

Keywords

Navigation