Skip to main content
Log in

Synthesis and study of V2O5/rGO nanocomposite as a cathode material for aqueous zinc ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Vanadium-based material is currently one of the most suitable materials for constructing aqueous ZIB. In this work, commercial V2O5 has also been used for comparing the battery’s performance with the V2O5-rGO (reduced graphene oxide) nanocomposite products. The commercial V2O5 showed poor cycle stability and low specific capacity (30 mA h g−1 specific capacity was observed after 200 cycles), while the V2O5 nanobelts/rGO composite showed good performance. After applying a current density of 0.1 A g−1, V2O5 nanobelts/rGO showed an outstanding cycle stability and high specific capacity of 135 mA h g−1 after 200 cycles. In the rate performance, when a current density of 1 A g−1 was applied, a high specific capacity of 113 mA h g−1 was obtained. Compared with the commercial V2O5, V2O5 nanobelts/rGO composite depicts superior performance as an electrode material for aqueous ZIB.

A nanocomposite comprising of V2O5 nanobelts and rGO is studied in the context of aqueous ZIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium-ion batteries. Nano Lett 10:4750–4755

    Article  CAS  Google Scholar 

  2. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  Google Scholar 

  3. Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  4. Huang K, Wang RY, Zhao SJ, Du P, Wang H, Wei HH, Long YZH, Deng BH, Lei M, Ge BH, Gou HY, Zhang R, Wu H (2020) Atomic species derived CoOx clusters on nitrogen doped mesoporous carbon as advanced bifunctional electro-catalysts for Zn-air battery. Energy Storage Mater 29:156–162

    Article  Google Scholar 

  5. Sun YK (2017) Direction for development of next-generation lithium-ion batteries. ACS Energy Lett 2:2694–2695

    Article  CAS  Google Scholar 

  6. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  7. Wang HY, Huang KL, Huang CHH, Liu SQ, Ren Y, Huang XB (2011) (NH4)0.5V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J Power Sources 196:5645–5650

    Article  CAS  Google Scholar 

  8. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

  9. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Wang J, Li X, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1:16039–16045

    Article  CAS  Google Scholar 

  10. Petnikota S, Vadali V, Srikanth SS, Nithyadharseni P, Reddy MV, Adams S, Chowdari BVR (2015) Sustainable graphene thermal reduction chemistry to obtain MnO nanonetwork supported exfoliated graphene oxide composite and its electrochemical characteristics. ACS Sustain Chem Eng 3(12):3205–3213

  11. Yang LY, Xie JR, Abliz A, Liu J, Wu R, Tang SS, Wang SY, Wu LL, Zhu YY (2019) Hollow paramecium-like SnO2/TiO2 heterostructure designed for sodium storage. J Solid State Chem 274:176–181

    Article  CAS  Google Scholar 

  12. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1:16039

  13. Huang K, Zhang L, Xu T, Wei HH, Zhang RY, Zhang XY, Ge BH, Lei M, Ma JY, Liu LM, Wu H (2019) −60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat Commun 10:606

    Article  CAS  Google Scholar 

  14. Huang K, Zhao ZB, Du HF, Du P, Wang H, Wang RY, Lin S, Wei HH, Long YZH, Lei M, Guo W, Wu H (2020) Rapid thermal annealing toward high-quality 2d cobalt fluoride oxide as an advanced oxygen evolution electrocatalyst. ACS Sustain Chem Eng 8:6905–6913

    Article  CAS  Google Scholar 

  15. Huang K, Wang RY, Wu HB, Wang H, He X, Wei HH, Wang SHP, Zhang R, Lei M, Guo W, Ge BH, Wu H (2019) Direct immobilized atomically dispersed pt catalyst by suppressing heterogeneous nucleation at - 40 °C. J Mater Chem A 7:25779–25784

    Article  CAS  Google Scholar 

  16. He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L (2017) Layered VS2 nanosheet-based aqueous zinc ion battery cathode. Adv Energy Mater 5:1601920

    Article  Google Scholar 

  17. An Q, Zhang P, Wei Q, He L, Xiong F, Sheng J, Wang Q, Mai L (2014) Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J Mater Chem A 2:3297–3302

    Article  CAS  Google Scholar 

  18. Qiao H, Zhu X, Zheng Z, Liu L, Zhang L (2006) Synthesis of V3O7·H2O nanobelts as cathode materials for lithium−ion batteries. Electrochem Commun 8:21–26

    Article  CAS  Google Scholar 

  19. Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y (2016) Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25:211–217

    Article  CAS  Google Scholar 

  20. Zhou J, Shana LT, Wu ZX, Guo X, Fang GZ, Liang SQ (2016) Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem Commun 54:4457–4460

  21. Song M, Tan H, Chao DL, Fan HJ (2018) Recent advances in Zn-ion batteries. Adv Funct Mater 1802564:1–27

    Google Scholar 

  22. Trcoli R, Mantia FL (2015) An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8:481–485

    Article  Google Scholar 

  23. Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J (2016) Cation-deficient spinel ZnMn2O4 cathode in Zn-(CF3SO3)2 electrolyte for rechargeable aqueous zn-ion battery. J Am Chem Soc 138:12894–12901

    Article  CAS  Google Scholar 

  24. Tang Y, Liu CX, Zhu HR, Xie XS, Gao JW, Deng CB, Han MM, Liang SQ, Zhou J (2020) Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater 27:109–116

    Article  Google Scholar 

  25. Yang S, Zhang MSH, Wu XW, Wu XS, Zeng FH, Li YT, Duan SHY, Fan DH, Yang Y, Wu XM (2019) The excellent electrochemical performances of ZnMn2O4/Mn2O3: the composite cathode material for potential aqueous zinc ion batteries. J Electroanal Chem. 832:69–74

    Article  CAS  Google Scholar 

  26. Wu XW, Xiang YH, Peng QJ, Wu XS, Li YH, Tang F, Song RC, Liu ZHX, He ZQ, Wu XM (2017) A green-low-cost rechargeable aqueous zinc-ion battery using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A 5(34):17990–17997

    Article  CAS  Google Scholar 

  27. Liu Z, Pulletikurthi G, Endres F (2016) A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl Mater Interfaces 8:12158–12164

    Article  CAS  Google Scholar 

  28. Zhang L, Chen L, Zhou X, Liu Z (2015) Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater 5(2):1400930–1400934

  29. Jia Z, Wang B, Wang Y (2015) Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater Chem Phys 149-150:601–606

    Article  CAS  Google Scholar 

  30. Chae MS, Heo JW, Kwak HH, Lee H, Hong ST (2017) Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J Power Sources 337:204–211

    Article  CAS  Google Scholar 

  31. Chen XY, Wang LB, Li H, Cheng FG, Chen J (2019) Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J Energy Chem 38:20–25

    Article  Google Scholar 

  32. Xu DM, Wang HW, Li FY, Guan ZHC, Wang R, He BB, Gong YSH, Hu XL (2018) Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces 6(2):1801506

  33. Li YK, Huang ZHM, Kalambate PK, Zhong Y, Huang ZHM, Xie ML, Shen Y, Huang YH (2019) V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60:752–759

  34. Yan MG, He P, Chen Y, Wang SHY, Wei QL, Zhao KN, Xu X, An QY, Shuang Y, Shao YY, Mueller KT, Mai LQ, Liu J, Yang JH (2017) Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 30(1):1703725

  35. Liu JF, Wang X, Peng Q, Li YD (2005) Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv Mater 17:764–767

    Article  CAS  Google Scholar 

  36. Lina X, Gong YN, Zhang YD, Yan YDH, Guan QF (2014) Influence of pH value on photocatalytic activity of Bi4Ti3O12 crystals obtained by hydrothermal method. Chin J Chem Phys 27(2):209

    Article  Google Scholar 

  37. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Che Soc 80:1339–1339

    Article  CAS  Google Scholar 

  38. Lu PJ, Lei M, Liu J (2014) Graphene nanosheets encapsulated α-MoO3 nanoribbons with ultrahigh lithium ion storage properties. CrystEngComm 16(29):6745–6755

    Article  CAS  Google Scholar 

  39. Luo WB, Zheng BL (2017) Improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by double-layer coatingwith graphene oxide and V2O5 for lithium-ion batteries. Appl Sur Sci 404:310–317

  40. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc 195:145–154

    Article  CAS  Google Scholar 

  41. Li XCH, Xu XY, Xia FL, Bu LX, Qiu HX, Chen MX, Zhang L, Gao JP (2014) Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2precursor. Electrochim. Acta 130:305–313

    Article  CAS  Google Scholar 

  42. Li ZHL, Sun HJ, Xu J, Zhu QY, Chen W, Zakharova GS (2014) The synthesis, characterization and electrochemical properties of V3O7·H2O/CNT Nanocomposite. J Electron Spectrosc 195:145–154

    Article  Google Scholar 

  43. Huang K, Guo S, Wang R, Lin S, Hussain N, Wei H, Deng B, Long Y, Lei M, Tang H, Wu H (2020) Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes. Chin J Catal 41:1754–1760

    Article  CAS  Google Scholar 

  44. Zhou J, Shan L, Wu Z, Guo X, Fang G, Liang S (2018) Investigation of V2O5 as a lowcost rechargeable aqueous zinc ion battery cathode. Chem Commun 54:4457–4460

    Article  CAS  Google Scholar 

  45. Wu XW, Li YH, Zhao SY, Zeng FH, Peng XCH, Xiang YH, Ruan QY, Gao F, He T, Wu JH (2019) Fabrication of f-doped, c-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries. Solid State Ion 334:48–55

    Article  CAS  Google Scholar 

  46. Nie Y, Xiao W, Miao CH, Xu MB, Wang CHJ (2020) Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochim Acta 334:135654

    Article  CAS  Google Scholar 

  47. Deng CB, Xie XS, Han JW, Tang Y, Gao JW, Liu CX, Shi XD, Zhou J, Liang SQ (2020) A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv Funct Mater 30:2000599

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Xinjiang province (2019D01C083); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China; Natural Science Projects of Scientific Research Programs in Universities of Xinjiang (XJEDU2018Y016); National Natural Science Foundation of China (Grant Nos. 61804131); and Start-up Foundation for Doctors of Xinjiang University (No. BS160217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunjie Zhu, Linyu Yang or Shuying Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhu, K., Yang, L. et al. Synthesis and study of V2O5/rGO nanocomposite as a cathode material for aqueous zinc ion battery. Ionics 26, 5607–5615 (2020). https://doi.org/10.1007/s11581-020-03705-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03705-3

Keywords

Navigation