Skip to main content
Log in

Enhancing high-voltage electrochemical performance of LiNi0.7Mn0.15Co0.15O2 cathode materials with SiO2 coatings via electrostatic attraction forces method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

SiO2-coated LiNi0.7Mn0.15Co0.15O2 materials were successfully prepared by electrostatic attraction forces method via adjusting the Zeta potential between SiO2 and LiNi0.7Co0.15Mn0.15O2 in the suspension with the followed heating process. The structure, morphology, and electrochemical performances were characterized by XRD, SEM, TEM, XPS, CV, and EIS. As a result, compared with that with 71.4% capacity retention of bare materials, 1.0 wt% SiO2-coated LiNi0.7Co0.15Mn0.15O2 (NCM-S10) could deliver 184.50 mAh g−1 with 86.4% capacity retention after 100 cycles at 1 C over 3–4.5 V. In high temperature (55 °C), NCM-S10 also has 76.2% capacity retention after 100 cycles (3–4.5 V, 1 C), showing better cycling stability than that of the pristine (61.5%). The SiO2 coating layer efficiently inhibits side reaction between electrode and electrolyte and maintains the surface structure of LiNi0.7Co0.15Mn0.15O2. The increase in impedance is suppressed during the cycle, thereby enhances electrochemical properties of LiNi0.7Co0.15Mn0.15O2 in high voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hu S, Pillai AS, Liang G et al (2019) Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochemical Energy Reviews 2:277–311. https://doi.org/10.1007/s41918-019-00032-8

  2. Chen Y, Li Y, Li W, Cao G, Tang S, Su Q, Deng S, Guo J (2018) High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements. Electrochim Acta 281:48–59. https://doi.org/10.1016/j.electacta.2018.05.154

    Article  CAS  Google Scholar 

  3. Zhang M, Zhao H, Tan M, Liu J, Hu Y, Liu S, Shu X, Li H, Ran Q, Cai J, Liu X (2019) Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J Alloys Compd 774:82–92. https://doi.org/10.1016/j.jallcom.2018.09.281

    Article  CAS  Google Scholar 

  4. Li X, Zhang K, Wang M, Liu Y, Qu MZ, Zhao W, Zheng J (2018) Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain Energy Fuels 2:413–421. https://doi.org/10.1039/c7se00513j

    Article  CAS  Google Scholar 

  5. Duan Y, Yang L, Zhang MJ, Chen Z, Bai J, Amine K, Pan F, Wang F (2019) Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides. J Mater Chem A 7:513–519. https://doi.org/10.1039/c8ta10553g

    Article  CAS  Google Scholar 

  6. Zheng J, Kan WH, Manthiram A (2015) Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 7:6926–6934. https://doi.org/10.1021/acsami.5b00788

    Article  CAS  PubMed  Google Scholar 

  7. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013. https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  8. Qiu ZP, Zhang YJ, Huang XS, Duan J, Wang D, Nayaka GP, Li X, Dong P (2018) Beneficial effect of incorporating Ni-rich oxide and layered over-lithiated oxide into high-energy-density cathode materials for lithium-ion batteries. J Power Sources 400:341–349. https://doi.org/10.1016/j.jpowsour.2018.08.041

    Article  CAS  Google Scholar 

  9. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  10. Zeng X, Zhu J, Yang L, Zhou L, Shao L, Hu S, Huang C, Yang C, Qian D, Xi X (2019) Electrochemical stabilities of surface aluminum-doped LiNi0.5Co0.2Mn0.3O2 single crystals under different cutoff voltages. J Electroanal Chem 838:94–100. https://doi.org/10.1016/j.jelechem.2019.02.051

    Article  CAS  Google Scholar 

  11. Tornheim A, Trask SE, Zhang Z (2016) Evaluation of electrolyte oxidation stability on charged LiNi0.5Co0.2Mn0.3O2 cathode surface through potentiostatic holds. J Electrochem Soc 163:A1717–A1722. https://doi.org/10.1149/2.1051608jes

    Article  CAS  Google Scholar 

  12. Du R, Bi Y, Yang W et al (2015) Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5 v. Ceram Int 41:7133–7139. https://doi.org/10.1016/j.ceramint.2015.02.026

    Article  CAS  Google Scholar 

  13. Zhang YJ, Ren T, Zhang JF, Duan J, Li X, Zhou Z, Dong P, Wang D (2019) The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-rich cathode materials for lithium ion batteries. J Alloys Compd 805:1288–1296. https://doi.org/10.1016/j.jallcom.2019.05.090

    Article  CAS  Google Scholar 

  14. Wang L, Li J, Chi N et al (2012) Comparison of electrochemical performance of LiNi0.7Co0.15Mn0.15O2 with different surface composition. Adv Mater Res 554–556:445–449. https://doi.org/10.4028/www.scientific.net/AMR.554-556.445

    Article  CAS  Google Scholar 

  15. Hou P, Li F, Sun Y, Li H, Xu X, Zhai T (2018) Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries. ACS Appl Mater Interfaces 10:24508–24515. https://doi.org/10.1021/acsami.8b06286

    Article  CAS  PubMed  Google Scholar 

  16. Lim YJ, Lee SM, Lim H, Moon B, Han KS, Kim JH, Song JH, Yu JS, Cho W, Park MS (2018) Amorphous Li-Zr-O layer coating on the surface of high-Ni cathode materials for lithium ion batteries. Electrochim Acta 282:311–316. https://doi.org/10.1016/j.electacta.2018.06.062

    Article  CAS  Google Scholar 

  17. Zhang N, Zhang X, Shi E, Zhao S, Jiang K, Wang D, Wang P, Guo S, He P, Zhou H (2018) In situ X-ray diffraction and thermal analysis of LiNi0.8Co0.15Al0.05O2 synthesized via co-precipitation method. J Energy Chem 27:1655–1660. https://doi.org/10.1016/j.jechem.2018.06.007

    Article  Google Scholar 

  18. Zhang YJ, Xia GH, Zhang JF, Wang D, Dong P, Duan J (2020) Boosting high-voltage cyclic stability of nickel-rich layered cathodes in full-cell by metallurgy-inspired coating strategy. Appl Surf Sci 509:145380. https://doi.org/10.1016/j.apsusc.2020.145380

    Article  CAS  Google Scholar 

  19. Xiong X, Wang Z, Yue P, Guo H, Wu F, Wang J, Li X (2013) Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J Power Sources 222:318–325. https://doi.org/10.1016/j.jpowsour.2012.08.029

    Article  CAS  Google Scholar 

  20. Subramaniyam CM, Celio H, Shiva K, Gao H, Goodneough JB, Liu HK, Dou SX (2017) Long stable cycling of fluorine-doped nickel-rich layered cathodes for lithium batteries. Sustain Energy Fuels 1:1292–1298. https://doi.org/10.1039/c7se00164a

    Article  CAS  Google Scholar 

  21. Xu Y, Li X, Wang Z, Guo H, Huang B (2015) Structure and electrochemical performance of TiO2-coated LiNi0.80Co0.15Al0.05O2 cathode material. Mater Lett 143:151–154. https://doi.org/10.1016/j.matlet.2014.12.093

    Article  CAS  Google Scholar 

  22. Gao S, Zhan X, Cheng YT (2019) Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J Power Sources 410–411:45–52. https://doi.org/10.1016/j.jpowsour.2018.10.094

    Article  CAS  Google Scholar 

  23. Meng K, Wang Z, Guo H, Li X, Wang D (2016) Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3. Electrochim Acta 211:822–831. https://doi.org/10.1016/j.electacta.2016.06.110

    Article  CAS  Google Scholar 

  24. Dong P, Wang D, Yao Y, Li X, Zhang Y, Ru J, Ren T (2017) Stabilizing interface layer of LiNi0.5Co0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive. J Power Sources 344:111–118. https://doi.org/10.1016/j.jpowsour.2017.01.116

    Article  CAS  Google Scholar 

  25. Wu F, Zhang X, Zhao T, Li L, Xie M, Chen R (2015) Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 7:3773–3781. https://doi.org/10.1021/am508579r

    Article  CAS  PubMed  Google Scholar 

  26. Kuwahara A, Suzuki S, Miyayama M (2008) High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceram Int 34:863–866. https://doi.org/10.1016/j.ceramint.2007.09.037

    Article  CAS  Google Scholar 

  27. Liu XH, Kou LQ, Shi T, Liu K, Chen L (2014) Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn 0.3O2. J Power Sources 267:874–880. https://doi.org/10.1016/j.jpowsour.2014.05.047

    Article  CAS  Google Scholar 

  28. Kong JZ, Wang SS, Tai GA, Zhu L, Wang LG, Zhai HF, Wu D, Li AD, Li H (2016) Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating. J Alloys Compd 657:593–600. https://doi.org/10.1016/j.jallcom.2015.10.187

    Article  CAS  Google Scholar 

  29. Su Y, Cui S, Zhuo Z, Yang W, Wang X, Pan F (2015) Enhancing the high-voltage cycling performance of LiNi0.5Mn0.3Co0.2O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3. ACS Appl Mater Interfaces 7:25105–25112. https://doi.org/10.1021/acsami.5b05500

    Article  CAS  PubMed  Google Scholar 

  30. Xiang J, Chang C, Yuan L, Sun J (2008) A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem Commun 10:1360–1363. https://doi.org/10.1016/j.elecom.2008.07.012

    Article  CAS  Google Scholar 

  31. Yang XQ, Tang ZF, Wang HY, Zou BK, Chen CH (2016) Improving the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 by double-layer coating with Li2TiO3 for lithium-ion batteries. Ionics (Kiel) 22:2235–2238. https://doi.org/10.1007/s11581-016-1792-0

    Article  CAS  Google Scholar 

  32. Ren T, Zhang JF, Wang D, Dong P, Duan J, Li X, Rao S, Huang D, Zhang Y (2018) Enhancing the high-voltage performances of Ni-rich cathode materials by homogeneous La2O3 coating via a freeze-drying assisted method. Ceram Int 44:14660–14666. https://doi.org/10.1016/j.ceramint.2018.05.092

    Article  CAS  Google Scholar 

  33. Cho W, Kim SM, Song JH, Yim T, Woo SG, Lee KW, Kim JS, Kim YJ (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50. https://doi.org/10.1016/j.jpowsour.2014.12.128

    Article  CAS  Google Scholar 

  34. Liang L, Hu G, Jiang F, Cao Y (2016) Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J Alloys Compd 657:570–581. https://doi.org/10.1016/j.jallcom.2015.10.177

    Article  CAS  Google Scholar 

  35. Chen Y, Tang S, Deng S, Lei T, Li Y, Li W, Cao G, Zhu J, Zhang J (2019) Chemical coupling constructs amorphous silica modified LiNi0.6Co0.2Mn0.2O2 cathode materials and its electrochemical performances. J Power Sources 431:8–16. https://doi.org/10.1016/j.jpowsour.2019.05.042

    Article  CAS  Google Scholar 

  36. Omanda H, Brousse T, Marhic C, Schleich DM (2004) Improvement of the thermal stability of LiNi0.8Co0.2O2 cathode by a SiOx protective coating. J Electrochem Soc 151:A922. https://doi.org/10.1149/1.1710892

    Article  CAS  Google Scholar 

  37. Cho Y, Cho J (2010) Significant improvement of LiNi0.8Co0.15Al0.05O2 cathodes at 60°C by SiO[sub 2] dry coating for Li-ion batteries. J Electrochem Soc 157:A625. https://doi.org/10.1149/1.3363852

    Article  CAS  Google Scholar 

  38. Zhou P, Zhang Z, Meng H, Lu Y, Cao J, Cheng F, Tao Z, Chen J (2016) SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. Nanoscale 8:19263–19269. https://doi.org/10.1039/c6nr07438c

    Article  CAS  PubMed  Google Scholar 

  39. Zuo D, Wang C, Tian G et al (2019) Comparative study of Al2O3, SiO2 and TiO2-coated LiNi0.6Co0.2Mn0.2O2 electrode prepared by hydrolysis coating technology. J Electrochem Sci Eng 9:85. https://doi.org/10.5599/jese.624

    Article  CAS  Google Scholar 

  40. Zhao M, Xu Y, Ren P, Zuo Y, Su W, Tang YF (2020) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with a 3D-SiO2 framework by a new negative pressure immersion method. Dalton Trans 49:2933–2940. https://doi.org/10.1039/d0dt00054j

    Article  CAS  PubMed  Google Scholar 

  41. Liu WM, Hu GR, Peng ZD, du K, Cao YB, Liu Q (2011) Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries by a co-oxidation-controlled crystallization method. Chin Chem Lett 22:1099–1102. https://doi.org/10.1016/j.cclet.2011.01.041

    Article  CAS  Google Scholar 

  42. Chen C, Tao T, Qi W, Zeng H, Wu Y, Liang B, Yao Y, Lu S, Chen Y (2017) High-performance lithium ion batteries using SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as cathodes. J Alloys Compd 709:708–716. https://doi.org/10.1016/j.jallcom.2017.03.225

    Article  CAS  Google Scholar 

  43. Zheng X, Li X, Wang Z, Guo H, Huang Z, Yan G, Wang D (2016) Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim Acta 191:832–840. https://doi.org/10.1016/j.electacta.2016.01.142

    Article  CAS  Google Scholar 

  44. Liu H, Yang Y, Zhang J (2006) Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. J Power Sources 162:644–650. https://doi.org/10.1016/j.jpowsour.2006.07.028

    Article  CAS  Google Scholar 

  45. Lu Y, Zeng X, Wang J, Yang L, Hu S, Jia C, Zhao H, Yin D, Ge X, Xi X (2019) Ultrathin LiV2O4 layers modified LiNi0.5Co0.2Mn0.3O2 single-crystal cathodes with enhanced activity and stability. Adv Mater Interfaces 6:1–8. https://doi.org/10.1002/admi.201901368

    Article  CAS  Google Scholar 

  46. Dai G, Yu M, Shen F, Cao J, Ni L, Chen Y, Tang Y, Chen Y (2016) Improved cycling performance of LiNi0.8Co0.15Al0.05O2/Al2O3 with core-shell structure synthesized by a heterogeneous nucleation-and-growth process. Ionics (Kiel) 22:2021–2026. https://doi.org/10.1007/s11581-016-1750-x

    Article  CAS  Google Scholar 

  47. Gan Q, Qin N, Zhu Y, Huang Z, Zhang F, Gu S, Xie J, Zhang K, Lu L, Lu Z (2019) Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl Mater Interfaces 11:12594–12604. https://doi.org/10.1021/acsami.9b04050

    Article  CAS  PubMed  Google Scholar 

  48. Tang W, Chen Z, Xiong F, Chen F, Huang C, Gao Q, Wang T, Yang Z, Zhang W (2019) An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. J Power Sources 412:246–254. https://doi.org/10.1016/j.jpowsour.2018.11.062

    Article  CAS  Google Scholar 

  49. Feng Z, Huang X, Rajagopalan R, Tang Y, Peng Z, Wang H (2019) Enhanced electrochemical properties of LiNi0.8Co0.1Mn0.1O2 at elevated temperature by simultaneous structure and Interface regulating. J Electrochem Soc 166:A1439–A1448. https://doi.org/10.1149/2.0331908jes

    Article  CAS  Google Scholar 

  50. Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L, He T, Li J, Chen S (2015) Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7:7702–7708. https://doi.org/10.1021/acsami.5b00645

    Article  CAS  PubMed  Google Scholar 

  51. Chen Y, Li Y, Tang S, Lei T, Deng S, Xue L, Cao G, Zhu J (2018) Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J Power Sources 395:403–413. https://doi.org/10.1016/j.jpowsour.2018.05.088

    Article  CAS  Google Scholar 

  52. Wang L, Zhao J, He X et al (2012) Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int J Electrochem Sci 7:345–353. https://doi.org/10.1149/2.jes120015

    Article  CAS  Google Scholar 

  53. Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569. https://doi.org/10.1016/j.jpowsour.2008.11.113

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Government of Chongzuo, Guangxi Zhuang Autonomous Region (GC Joint Special Fund No. FA2019015), and Science and Technology Department of Guangxi Zhuang Autonomous Region (Guangxi Special Fund for Scientific Center and Talent Resources, No. AD18281073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjiao Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 4.78 MB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, Y., Yang, L. et al. Enhancing high-voltage electrochemical performance of LiNi0.7Mn0.15Co0.15O2 cathode materials with SiO2 coatings via electrostatic attraction forces method. Ionics 26, 5393–5403 (2020). https://doi.org/10.1007/s11581-020-03657-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03657-8

Keywords

Navigation