Skip to main content
Log in

H2O2-assisted microwave synthesis of NiO/CNT nanocomposite material for supercapacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

NiO nanoflakes anchored on carbon nanotubes (CNTs) were fabricated through a H2O2-assisted microwave irradiation method. The formation of the NiO/CNT nanocomposites were characterised by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), micro Raman spectroscopy and X-ray photoelectron spectroscopy. Surface morphology studies of the prepared materials were carried out using scanning and transmission electron microscopy (SEM and TEM). The electrochemical performance of the NiO and NiO/CNTs were analysed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. GCD studies of the NiO/CNTs reveal a maximum specific capacitance of 258 F/g at 1 A/g current density in 2 M KOH aqueous electrolyte was achieved for 1:1 ratio of NiO/CNTs composite. Further, a specific capacitance of 258 F/g at 1 A/g current density obtained for 1:1 ratio of NiO/CNTs is almost 2.15 times higher than that of prepared NiO (120 F/g) which indicates an excellent synergistic effect in NiO/CNTs nanocomposite. Furthermore, the NiO/CNTs nanocomposite electrode showed outstanding cycling stability retention of 86% of the initial capacitance after 2500 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen N, Zhou J, Zhu G, Kang Q, Ji H, Zhang Y, Wang X, Peng L, Guo X, Lu C, Chen J (2018) A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires. Nanoscale 10(8):3709–3719

    CAS  PubMed  Google Scholar 

  2. Mirzaeian M, Abbas Q, Ogwu A, Hall P, Goldin M, Mirzaeian M, Jirandehi HF (2017) Electrode and electrolyte materials for electrochemical capacitors. Int J Hydrog Energy 42(40):25565–25587

    CAS  Google Scholar 

  3. Zhang X, Yan P, Zhang R, Jin J, Xu J, Wu C, Liu H (2016) Fabrication of graphene and core–shell activated porous carbon-coated carbon nanotube hybrids with excellent electrochemical performance for supercapacitors. Int J Hydrog Energy 41(15):6394–6402

    CAS  Google Scholar 

  4. Afzal A, Abuilaiwi FA, Habib A, Awais M, Waje SB, Atieh MA (2017) Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J Power Sources 352:174–186

    CAS  Google Scholar 

  5. Gao YP, Zhai ZB, Huang KJ, Zhang YY (2017) Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New J Chem 41(20):11456–11470

    CAS  Google Scholar 

  6. Liu S, Li S, Sekar K, Li R, Zhu Y, Xing R, Nakata K, Fujishima A (2019) Hierarchical ZnS@ C@ MoS2 core-shell nanostructures as efficient hydrogen evolution electrocatalyst for alkaline water electrolysis. Int J Hydrog Energy 44(47):25310–25318

    CAS  Google Scholar 

  7. Tseng LH, Hsiao CH, Nguyen DD, Hsieh PY, Lee CY, Tai NH (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim Acta 266:284–292

    CAS  Google Scholar 

  8. Kumar RD, Karuppuchamy S (2016) Microwave mediated synthesis of nanostructured co-WO3 and CoWO4 for supercapacitor applications. J Alloys Compd 674:384–391

    Google Scholar 

  9. Liu P, Yan J, Gao X, Huang Y, Zhang Y (2018) Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors. Electrochim Acta 272:77–87

    CAS  Google Scholar 

  10. Lai H, Wu Q, Zhao J, Shang L, Li H, Che R, Lyu Z, Xiong J, Yang L, Wang X, Hu Z (2016) Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ Sci 9(6):2053–2060

    CAS  Google Scholar 

  11. Nunes WG, Da Silva LM, Vicentini R, Freitas BG, Costa LH, Pascon AM, Zanin H (2019) Nickel oxide nanoparticles supported onto oriented multi-walled carbon nanotube as electrodes for electrochemical capacitors. Electrochim Acta 298:468–483

    CAS  Google Scholar 

  12. Harilal M, Vidyadharan B, Misnon II, Anilkumar GM, Lowe A, Ismail J, Yusoff MM, Jose R (2017) One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 9(12):10730–10742

    CAS  PubMed  Google Scholar 

  13. Yi H, Wang H, Jing Y, Peng T, Wang X (2015) Asymmetric supercapacitors based on carbon nanotubes@ NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J Power Sources 285:281–290

    CAS  Google Scholar 

  14. Sun T, Liu X, Li Z, Ma L, Wang J, Yang S (2017) Graphene-wrapped CNT@ MoS2 hierarchical structure: synthesis, characterisation and electrochemical application in supercapacitors. New J Chem 41(15):7142–7150

    CAS  Google Scholar 

  15. Long H, Guo C, Wei G, Jiang L, Yu Y (2019) Facile synthesis of various carbon nanotube/metal oxide nanocomposites with high quality. Vacuum 166:147–150

    CAS  Google Scholar 

  16. Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 1(8):2817–2827

    Google Scholar 

  17. Sahebian S, Zebarjad SM, Khaki JV, Lazzeri A (2016) The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method. Int Nano Lett 6(3):183–190

    Google Scholar 

  18. Tang X, Liang M, Zhang Y, Sun W, Wang Y (2019) Ultrafine ternary metal oxide particles with carbon nanotubes: a metal–organic-framework-based approach and superior lithium-storage performance. Dalton Trans 48(13):4413–4419

    CAS  PubMed  Google Scholar 

  19. Fisher RA, Watt MR, Ready WJ (2013) Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2(10):M3170–M3177

    CAS  Google Scholar 

  20. Arunachalam R, Prataap RV, Pavul Raj R, Mohan S, Vijayakumar J, Péter L, Al Ahmad M (2019) Pulse electrodeposited RuO2 electrodes for high-performance supercapacitor applications. Surf Eng 35(2):102–108

    CAS  Google Scholar 

  21. Wang YT, Lu AH, Zhang HL, Li WC (2011) Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J Phys Chem C 115(13):5413–5421

    CAS  Google Scholar 

  22. Yin Y, Zeng H, Sui Q, Xiang C, Zou Y, Chu H, Qiu S, Chen Q, Xu F, Sun L (2019) Formation of CoO-NiO nanoparticles on nitrogen doped porous carbon as high performance supercapacitor electrode. Int J Electrochem Sci 14(1):764–776

    CAS  Google Scholar 

  23. Li T, Yu H, Zhi L, Zhang W, Dang L, Liu Z, Lei Z (2017) Facile electrochemical fabrication of porous Fe2O3 nanosheets for flexible asymmetric supercapacitors. J Phys Chem C 121(35):18982–18991

    CAS  Google Scholar 

  24. Sk MM, Yue CY, Ghosh K, Jena RK (2016) Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J Power Sources 308:121–140

    CAS  Google Scholar 

  25. Xiao H, Yao S, Liu H, Qu F, Zhang X, Wu X (2016) NiO nanosheet assembles for supercapacitor electrode materials. Prog Nat Sci Mater Int 26(3):271–275

    CAS  Google Scholar 

  26. Ates M, Eker AA, Eker B (2017) Carbon nanotube-based nanocomposites and their applications. J Adhes Sci Technol 31(18):1977–1997

    CAS  Google Scholar 

  27. Yao M, Hu Z, Liu Y, Liu P, Ai Z, Rudolf O (2015) 3D hierarchical mesoporous roselike NiO nanosheets for high-performance supercapacitor electrodes. J Alloys Compd 648:414–418

    CAS  Google Scholar 

  28. Lv J, Wang Z, Miura H (2018) Facile synthesis of mesoporous NiO nanoflakes on graphene foam and its electrochemical properties for supercapacitor application. Solid State Commun 269:45–49

    CAS  Google Scholar 

  29. Hui X, Qian L, Harris G, Wang T, Che J (2016) Fast fabrication of NiO@ graphene composites for supercapacitor electrodes: combination of reduction and deposition. Mater.Des 109:242–250

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin J, Jia H, Liang H, Chen S, Cai Y, Qi J, Qu C, Cao J, Fei W, Feng J (2018) In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for high-performance supercapacitors. Adv Sci 5(3):1700687

    Google Scholar 

  31. Adekunle AS, Ozoemena KI, Mamba BB, Agboola BO, Oluwatobi OS (2011) Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from MWCNTS/nickel oxide nanocomposite. Int J Electrochem Sci 6:4760–4774

    CAS  Google Scholar 

  32. Feng Y, Zhang H, Li W, Fang L, Wang Y (2016) Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode. J Power Sources 301:78–86

    CAS  Google Scholar 

  33. Shi S, Wan G, Wu L, He Z, Wang K, Tang Y, Xu X, Wang G (2019) Ultrathin manganese oxide nanosheets uniformly coating on carbon nanocoils as high-performance asymmetric supercapacitor electrodes. J Colloid Interface Sci 537:142–150

    CAS  PubMed  Google Scholar 

  34. Li X, Yu L, Wang G, Wan G, Peng X, Wang K, Wang G (2017) Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors. Electrochim Acta 255:15–22

    CAS  Google Scholar 

  35. Yu L, Wan G, Peng X, Dou Z, Li X, Wang K, Lin S, Wang G (2016) Fabrication of carbon-coated NiO supported on graphene for high performance supercapacitors. RSC Adv 6(17):14199–14204

    CAS  Google Scholar 

  36. Yu L, Wang G, Wan G, Wang G, Lin S, Li X, Wang K, Bai Z, Xiang Y (2016) Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors. Dalton Trans 45(35):13779–13786

    CAS  PubMed  Google Scholar 

  37. Yu W, Li BQ, Ding SJ (2016) Electroless fabrication and supercapacitor performance of CNT@ NiO-nanosheet composite nanotubes. Nanotechnology 27(7):075605

    CAS  PubMed  Google Scholar 

  38. Dai K, Liang C, Dai J, Lu L, Zhu G, Liu Z, Liu Q, Zhang Y (2014) High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance. Mater Chem Phys 143(3):1344–1351

    CAS  Google Scholar 

  39. Vijayakumar S, Ponnalagi AK, Nagamuthu S, Muralidharan G (2013) Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochim Acta 106:500–505

    CAS  Google Scholar 

  40. Wang F, Zhou Q, Li G, Wang Q (2017) Microwave preparation of 3D flower-like MnO2/Ni(OH)2/nickel foam composite for high-performance supercapacitors. J Alloys Compd 700:185–190

    CAS  Google Scholar 

  41. Kumar RD, Andou Y, Sathish M, Karuppuchamy S (2016) Synthesis of nanostructured cu-WO3 and CuWO4 for supercapacitor applications. J Mater Sci Mater Electron 27(3):2926–2932

    Google Scholar 

  42. Kumar RD, Andou Y, Karuppuchamy S (2016) Microwave-assisted synthesis of Zn–WO3 and ZnWO4 for pseudocapacitor applications. J Phys Chem Solids 92:94–99

    CAS  Google Scholar 

  43. Zeng S, Cao Y, Sang W, Li T, Gan N, Zheng L (2012) Enrichment of polychlorinated biphenyls from aqueous solutions using Fe3O4 grafted multiwalled carbon nanotubes with poly dimethyl diallyl ammonium chloride. Int J Mol Sci 13(5):6382–6398

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu G, Liu Y, Xi C, Bao C, Xu H, Shen X, Zhu X (2013) Polymer guided synthesis of Ni (OH)2 with hierarchical structure and their application as the precursor for sensing materials. Cryst Eng Comm 15(44):9189–9195

    CAS  Google Scholar 

  45. Banerjee D, Ghorai UK, Das NS, Das B, Thakur S, Chattopadhyay KK (2018) Amorphous carbon nanotubes–nickel oxide nanoflower hybrids: a low cost energy storage material. ACS Omega 3(6):6311–6320

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Basavegowda N, Mishra K, Lee YR (2019) Fe3O4-decorated MWCNTs as an efficient and sustainable heterogeneous nanocatalyst for the synthesis of polyfunctionalised pyridines in water. Mater Technol 34:558–569

    CAS  Google Scholar 

  47. Ngo YL, Hur SH (2016) Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater Res Bull 84:168–176

    CAS  Google Scholar 

  48. Qiu Z, He D, Wang Y, Zhao X, Zhao W, Wu H (2017) High performance asymmetric supercapacitors with ultrahigh energy density based on hierarchical carbon nanotubes@ NiO core–shell nanosheets and defect-introduced graphene sheets with hole structure. RSC Adv 7(13):7843–7856

    CAS  Google Scholar 

  49. Liu W, Lu C, Wang X, Liang K, Tay BK (2015) In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J Mater Chem A 3(2):624–633

    CAS  Google Scholar 

  50. Kim DK, Hwang M, Ko D, Kang J, Seong KD, Piao Y (2017) Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications. Electrochim Acta 246:680–688

    CAS  Google Scholar 

  51. Ali MA, Solanki PR, Srivastava S, Singh S, Agrawal VV, John R, Malhotra BD (2015) Protein functionalized carbon nanotubes-based smart lab-on-a-chip. ACS Appl Mater Interfaces 7(10):5837–5846

    CAS  PubMed  Google Scholar 

  52. Wu Q, Wen M, Chen S, Wu Q (2015) Lamellar-crossing-structured Ni (OH)2/CNTs/Ni (OH)2 nanocomposite for electrochemical supercapacitor materials. J Alloys Compd 646:990–997

    CAS  Google Scholar 

  53. Roy A, Ray A, Saha S, Ghosh M, Das T, Satpati B, Nandi M, Das S (2018) NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim Acta 283:327–337

    CAS  Google Scholar 

  54. Wu C, Deng S, Wang H, Sun Y, Liu J, Yan H (2014) Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications. ACS Appl Mater Interfaces 6(2):1106–1112

    CAS  PubMed  Google Scholar 

  55. Hakamada M, Abe T, Mabuchi M (2016) Electrodes from carbon nanotubes/NiO nanocomposites synthesised in modified Watts bath for supercapacitors. J Power Sources 325:670–674

    CAS  Google Scholar 

  56. Bouessay I, Rougier A, Tarascon JM (2004) Electrochemically inactive nickel oxide as electrochromic material. J Electrochem Soc 151(6):H145–H152

    CAS  Google Scholar 

  57. Ren B, Fan M, Yang X, Wang L, Yu H (2019) 3D hierarchical structure electrodes of MnO2 nanosheets decorated on needle-like NiCo2O4 nanocones on Ni foam as a cathode material for asymmetric supercapacitors. Chem Sel 4(19):5641–5650

    CAS  Google Scholar 

  58. Zheng YZ, Ding HY, Zhang ML (2009) Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material. Mater Res Bull 44(2):403–407

    CAS  Google Scholar 

  59. Xu J, Li L, He F, Lv R, Yang P (2014) A novel double-shelled C@ NiO hollow microsphere: synthesis and application for electrochemical capacitor. Electrochim Acta 148:211–219

    CAS  Google Scholar 

  60. Shin DH, Lee JS, Jun J, Jang J (2014) Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications. J Mater Chem A 2(10):3364–3371

    CAS  Google Scholar 

  61. Iqbal N, Wang X, Babar AA, Yu J, Ding B (2016) Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. J Colloid Interface Sci 476:87–93

    CAS  PubMed  Google Scholar 

  62. Jiang Y, Leng X, Jia Z, Chen H, Suo H, Zhao C (2015) In situ growth of NiO nanostructures directly on nickel foam and its electrochemical property. J Mater Sci Mater Electron 26(5):2995–3000

    CAS  Google Scholar 

  63. Nathan T, Aziz A, Noor AF, Prabaharan SR (2008) Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J Solid State Electrochem 12(7–8):1003–1009

    CAS  Google Scholar 

  64. Kolathodi MS, Palei M, Natarajan TS (2015) Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J Mater Chem A 3(14):7513–7522

    CAS  Google Scholar 

  65. Su AD, Zhang X, Rinaldi A, Nguyen ST, Liu H, Lei Z, Lu L, Duong HM (2013) Hierarchical porous nickel oxide–carbon nanotubes as advanced pseudocapacitor materials for supercapacitors. Chem Phys Lett 561:68–73

    Google Scholar 

  66. Lee JY, Liang K, An KH, Lee YH (2005) Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth Met 150(2):153–157

    CAS  Google Scholar 

  67. Zheng Y, Zhang M, Gao P (2007) Preparation and electrochemical properties of multiwalled carbon nanotubes–nickel oxide porous composite for supercapacitors. Mater Res Bull 42(9):1740–1747

    CAS  Google Scholar 

  68. Zhang Y, Gui Y, Wu X, Feng H, Zhang A, Wang L, Xia T (2009) Preparation of nanostructures NiO and their electrochemical capacitive behaviors. Int J Hydrog Energy 34(5):2467–2470

    CAS  Google Scholar 

  69. Zhu YG, Cao GS, Sun CY, Xie J, Liu SY, Zhu TJ, Zhao XB, Yang HY (2013) Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor. RSC Adv 3(42):19409–19415

    CAS  Google Scholar 

  70. Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci 255(5):2603–2607

    CAS  Google Scholar 

  71. Xing W, Li F, Yan ZF, Lu GQ (2004) Synthesis and electrochemical properties of mesoporous nickel oxide. J Power Sources 134(2):324–330

    CAS  Google Scholar 

  72. Zhu J, Jiang J, Liu J, Ding R, Ding H, Feng Y, Wei G, Huang X (2011) Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. J Solid State Chem 184(3):578–583

    CAS  Google Scholar 

  73. Chang HY, Chang HC, Lee KY (2013) Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application. Vacuum 87:164–168

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to MHRD-RUSA, Government of India and Ministry of Higher Education, Government of Tamil Nadu, RUSA R&I-Phase-I component 8.0 and RUSA-Phase 2.0 grant sanctioned vide Letter No. F.24-51/2014-U, for financial support. The authors gratefully acknowledge DST, New Delhi, for providing partial financial support to carry out this research work under DST-PURSE scheme. Dr. V. Sannasi gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India for providing CSIR-RA.

Supporting information

Supporting information of this manuscript is available from the electronic format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karuppuchamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sannasi, V., Maheswari, K.U., Karthikeyan, C. et al. H2O2-assisted microwave synthesis of NiO/CNT nanocomposite material for supercapacitor applications. Ionics 26, 4067–4079 (2020). https://doi.org/10.1007/s11581-020-03563-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03563-z

Keywords

Navigation