Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of hollow Cu-Co selenide for hybrid supercapacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, the bimetallic Cu-Co selenide with well-defined hollow nanostructures has been successfully prepared through a simple hydrothermal selenization process. When utilized as the electrode material, the as-synthesized nanostructures can exhibit good capacity performance of 503 C g−1 (139.7 mAh g−1) at 10 mA cm−2, and also show good capacity retention (~ 70%) within the wide testing current region. Moreover, a hybrid supercapacitor based on this well-defined Cu-Co selenide and activated carbon has been successfully assembled. Within the potential window of 1.6 V, the maximum specific capacity of 132 C g−1 and the energy density of 29.5 Wh kg−1 are also demonstrated. The electrochemical behaviors presented in three- and two-electrode systems show that this bimetallic compound mentioned here has possible usage in the field of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4(7):1600539. https://doi.org/10.1002/advs.201600539

    Article  CAS  Google Scholar 

  2. Wu Z, Li L, Yan JM, Zhang XB (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4(6):1600382. https://doi.org/10.1002/advs.201600382

    Article  CAS  Google Scholar 

  3. Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L (2017) Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv Mater 29(20). https://doi.org/10.1002/adma.201602914

  4. Liu SD, Kwan SH, Kwun NH, Je MY, Kim KH (2016) Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J Mater Chem A 4:8061–8071. https://doi.org/10.1039/C6TA00960C

    Article  CAS  Google Scholar 

  5. Kuang M, Liu XY, Dong F, Zhang YX (2015) Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core-shell arrays on Ni foam for high-performance supercapacitors. J Mater Chem A 3:21528–21536. https://doi.org/10.1039/C5TA05957G

    Article  CAS  Google Scholar 

  6. Zhu YR, Yun XR, Li JY, Xiang KX, Xiao L, Chen H, Chen XH (2018) An investigation of the electrochemical behaviors of M0.85Se (M=Ni, Co) materials for alkaline aqueous battery. J Electrochem Soc 165:A3723–A3731. https://doi.org/10.1149/2.0371816jes

    Article  CAS  Google Scholar 

  7. Li M, Yang W, Li J, Feng M, Li W, Li H, Yu Y (2018) Porous layered stacked MnCo2O4 cubes with enhanced electrochemical capacitive performance. Nanoscale 10(5):2218–2225. https://doi.org/10.1039/c7nr08239h

    Article  CAS  PubMed  Google Scholar 

  8. Hu H, Guan B, Xia B, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137(16):5590–5595. https://doi.org/10.1021/jacs.5b02465

    Article  CAS  PubMed  Google Scholar 

  9. Zhao C, Huang B, Fu W, Chen J, Zhou J, Xie E (2015) Fabrication of porous nanosheet-based Co3O4 hollow nanocubes for electrochemical capacitors with high rate capability. Electrochim Acta 178:555–563. https://doi.org/10.1016/j.electacta.2015.08.057

    Article  CAS  Google Scholar 

  10. Ensafi AA, Moosavifard SE, Kaverlavani SK (2018) Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors. J Mater Chem A 6:10497–10506. https://doi.org/10.1039/C8TA02819B

    Article  CAS  Google Scholar 

  11. Jiang Z, Li Z, Qin Z, Sun H, Jiao X, Chen D (2013) LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 5(23):11770–11775. https://doi.org/10.1039/c3nr03829g

    Article  CAS  PubMed  Google Scholar 

  12. Liu SD, Ni DX, Li HF, Hui KN, Ouyang CY, Jun SC (2018) Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co). J Mater Chem A 6:10674–10685. https://doi.org/10.1039/C8TA00540K

    Article  CAS  Google Scholar 

  13. Yu M, Li X, Ma Y, Liu R, Liu J, Li S (2017) Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors. Appl Surf Sci 396:1816–1824. https://doi.org/10.1016/j.apsusc.2016.11.203

    Article  CAS  Google Scholar 

  14. Kaverlavani SK, Moosavifard SE, Bakouei A (2017) Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors. J Mater Chem A 5:14301–14309. https://doi.org/10.1039/C7TA03943C

    Article  CAS  Google Scholar 

  15. Kirubasankar B, Murugadoss V, Angaiah S (2017) Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv 7:5853–5862. https://doi.org/10.1039/C6RA25078E

    Article  CAS  Google Scholar 

  16. Ghosh K, Yue CY, Sk MM, Jena RK (2017) Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl Mater Interfaces 9(18):15350–15363. https://doi.org/10.1021/acsami.6b16406

    Article  CAS  PubMed  Google Scholar 

  17. Bhagwan J, Nagaraju G, Ramulu B, Yu JS (2019) Promotive effect of MWCNT on ZnCo2O4 hexagonal plates and their application in aqueous asymmetric supercapacitor. J Electrochem Soc 166:A217–A224. https://doi.org/10.1149/2.0631902jes

    Article  CAS  Google Scholar 

  18. Wang QF, Ma Y, Liang X, Zhang DH, Miao M (2018) Novel core/shell CoSe2@PPy nanoflowers for high-performance fiber asymmetric supercapacitors. J Mater Chem A 6:10361–10369. https://doi.org/10.1039/C8TA02056F

    Article  CAS  Google Scholar 

  19. Kaverlavani SK, Moosavifard SE, Bakouei A (2017) Self-templated synthesis of uniform nanoporous CuCo2O4 double-shelled hollow microspheres for high-performance asymmetric supercapacitors. Chem Commun 53(6):1052–1055. https://doi.org/10.1039/c6cc08888k

    Article  Google Scholar 

  20. Moosavifard SE, Fanib S, Rahmanian M (2016) Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem Commun 52:4517–4520. https://doi.org/10.1039/C6CC00215C

    Article  CAS  Google Scholar 

  21. Gopi C, Reddy AE, Kim HJ (2018) Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods. J Mater Chem A 6:7439–7448. https://doi.org/10.1039/C8TA01141A

    Article  Google Scholar 

  22. Chen H, Fan M, Li C, Tian G, Lv C, Chen D, Shu K, Jiang J (2016) One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors. J Power Sources 329:314–322. https://doi.org/10.1016/j.jpowsour.2016.08.097

    Article  CAS  Google Scholar 

  23. Deka BK, Hazarika A, Kim J, Kim N, Jeong HE, Park YB, Park HW (2019) Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem Eng J 355:551–559. https://doi.org/10.1016/j.cej.2018.08.172

    Article  CAS  Google Scholar 

  24. Chen HC, Chen S, Fan MQ, Li C, Chen D, Tian GL, Shu K (2015) Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J Mater Chem A 3:23653–23659. https://doi.org/10.1039/C5TA08366D

    Article  CAS  Google Scholar 

  25. Wu L, Shen L, Wang T, Xu X, Sun Y, Wang Y, Zhao Y, Du Y, Zhong W (2018) Component-controllable bimetallic nickel cobalt selenides (NixCo1-x)0.85Se for high performance supercapacitors. J Alloys Compd 766:527–535. https://doi.org/10.1016/j.jallcom.2018.06.353

    Article  CAS  Google Scholar 

  26. Xu P, Zeng W, Luo S, Ling C, Xiao J, Zhou A, Sun Y, Liao K (2017) 3D Ni-Co selenide nanorod array grown on carbon fiber paper: towards high-performance flexible supercapacitor electrode with new energy storage mechanism. Electrochim Acta 241:41–49. https://doi.org/10.1016/j.electacta.2017.04.121

    Article  CAS  Google Scholar 

  27. Bhat KS, Nagaraja HS (2019) Effect of isoelectronic tungsten doping on molybdenum selenide nanostructures and their graphene hybrids for supercapacitors. Electrochim Acta 302:459–471. https://doi.org/10.1016/j.electacta.2019.02.059

    Article  CAS  Google Scholar 

  28. Bhat KS, Nagaraja HS (2018) Effect of oxygen substitution and phase on nickel selenide nanostructures for supercapacitor applications. Mater Res Express 5:105504. https://doi.org/10.1088/2053-1591/aadac2

    Article  CAS  Google Scholar 

  29. Hong W, Wang J, Li Z, Yang S (2015) Fabrication of Co3O4@Co-Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage. Energy 93:435–441. https://doi.org/10.1016/j.energy.2015.09.053

    Article  CAS  Google Scholar 

  30. Zhu J, Li Q, Bai L, Sun Y, Zhou M, Xie Y (2012) Metastable tetragonal Cu2Se hyperbranched structures: large-scale preparation and tunable electrical and optical response regulated by phase conversion. Chem Eur J 18(41):13213–13221. https://doi.org/10.1002/chem.201200899

    Article  CAS  PubMed  Google Scholar 

  31. Peng H, Wei C, Wang K, Meng T, Ma G, Lei Z, Gong X (2017) Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl Mater Interfaces 9(20):17067–17075. https://doi.org/10.1021/acsami.7b02776

    Article  CAS  PubMed  Google Scholar 

  32. Park SK, Kim JK, Kang YC (2017) Metal-organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhancedelectrochemical properties for sodium-ion storageand hydrogen evolution. J Mater Chem A 5:18823–18830. https://doi.org/10.1039/C7TA05571D

    Article  CAS  Google Scholar 

  33. Xie S, Gou J, Liu B, Liu C (2019) Nickel-cobalt selenide as high-performance and long-life electrode material for supercapacitor. J Colloid Interface Sci 540:306–314. https://doi.org/10.1016/j.jcis.2019.01.030

    Article  CAS  PubMed  Google Scholar 

  34. Zhu Y, Huang Z, Hu Z, Xi L, Ji X, Liu Y (2018) 3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim Acta 269:30–37. https://doi.org/10.1016/j.electacta.2018.02.146

    Article  CAS  Google Scholar 

  35. Hu XY, Nan HS, Liu M, Liu SJ, An T, Tian HW (2019) Battery-like MnCo2O4 electrode materials combined with active carbon for hybrid supercapacitors. Electrochim Acta 306:599–609. https://doi.org/10.1016/j.electacta.2019.03.166

    Article  CAS  Google Scholar 

  36. Bhat KS, Shenoy S, Nagaraja HS, Sridharan K (2017) Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes. Electrochim Acta 248:188–196. https://doi.org/10.1016/j.electacta.2017.07.137

    Article  CAS  Google Scholar 

  37. Sahoo S, Pazhamalai P, Krishnamoorthy K, Kim SJ (2018) Hydrothermally prepared α-MnSe nanoparticles as a new pseudocapacitive electrode material for supercapacitor. Electrochim Acta 268:403–410. https://doi.org/10.1016/j.electacta.2018.02.116

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the 1331 Engineering of Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Zhang, J. Enhanced electrochemical performance of hollow Cu-Co selenide for hybrid supercapacitor applications. Ionics 26, 2011–2020 (2020). https://doi.org/10.1007/s11581-019-03358-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03358-x

Keywords

Navigation