Skip to main content
Log in

Enhanced discharge capacity of Mg-air battery with addition of water dispersible nano MoS2 sheet in MgCl2 electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The aim of the present study is to increase the discharge capacity of Mg-air battery via electrolyte using water dispersible nano MoS2 sheet as electrocatalyst since MoS2 shows enhanced anodic behaviour. The nano MoS2 sheet was effectively synthesised by polymer exfoliation technique employing ball milling and then converted into water dispersible form by adjusting its pH value above 10. The structure, morphology, crystallinity, particle size distribution and surface area of water dispersible nano MoS2 (WDNMoS2) were characterised comprehensively employing different characterisation techniques. A detailed analysis of corrosion, impedance and charge discharge performance of Mg-air battery were carried out with and without water dispersible nano MoS2 (WDNMoS2) in MgCl2 electrolytes. The charge-discharge capacity of Mg-air battery is enhanced nearly 18% in case of addition of WDNMoS2 (1170 mAh g−1) to aqueous MgCl2 electrolytes compared with aqueous MgCl2 electrolyte (990 mAh g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kim K, Cho YH, Eom SW, Kim HS, Yeum JH (2010) Anions of organic acids as gas suppressants in zinc–air batteries. Mater Res Bull 45:262–264

    Article  CAS  Google Scholar 

  2. Siva P, Prabhu P, Selvam M, Karthik S, Rajendran (2017) V Electrocatalytic conversion of carbon dioxide to urea on nano FeTiO3 surface. Ionics 23:1871–1878

    Article  CAS  Google Scholar 

  3. Smith JG, Naruse J, Hiramatsu H, Seigel DJ (2016) Theoretical limiting potential in mg/O2 batteries. Chem Mater 28:1390–1401

    Article  CAS  Google Scholar 

  4. Song SQ, Liang L, Zhou W, Sun G, Xin Q, Stergiopolous V, Tsiakaras P (2005) Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance. J Power Sources 145:495–501

    Article  CAS  Google Scholar 

  5. Wu Y, Wang T, Zhang Y, Xin S, He X, Zhang D, Shuri J (2016) Electrocatalytic performance of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Sci Rep 2:1–8

    Google Scholar 

  6. Bucur CB, Gregory T, Oliver AG, Muldoon J (2015) Confession of a magnesium battery. J Phys Chem Lett 18:3578–3591

    Article  CAS  Google Scholar 

  7. Zhang T, Tao Z, Chen J (2014) Magnesium air batteries: from principle to application. Mater Horiz 1:196–206

    Article  Google Scholar 

  8. Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells fundamentals, technology and applications. Wiley, Chichester

    Google Scholar 

  9. Siva P, Prabu P, Karthik S, Arunkumar PS, Rajendran V (2018) Ultrathin sheet structure Ni-MoS2 anode and MnO2/water dispersion graphene cathode for modern asymmetrical coin cell supercapacitor. J Alloy Compd 731:936–944

  10. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  CAS  PubMed  Google Scholar 

  11. Merk D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4:3878

    Article  CAS  Google Scholar 

  12. Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136

    Article  CAS  Google Scholar 

  13. Tang Q, Jiang D (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6:4953–4961

    Article  CAS  Google Scholar 

  14. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Weng F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    Article  CAS  PubMed  Google Scholar 

  15. Hone J, Shane J, Heinz TF, Make KF, Lee C (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  CAS  PubMed  Google Scholar 

  16. Kibsgaard J, Jramillo TF, Besenbacher F (2014) Building an appropriate active site motif inti hydrogen evolution catalyst with thiomolybdate [Mo3S13]2−. Nat Chem 6:248–253

    Article  CAS  PubMed  Google Scholar 

  17. Kibsgaard J, Chen Z, Reinekce BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices 58:3042–3047

    Article  CAS  Google Scholar 

  19. Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang Y (2011) First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, ta; X=S, se, Te) monolayers. Physica B 406:2254–2260

    Article  CAS  Google Scholar 

  20. Ataca C, Sahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999

    Article  CAS  Google Scholar 

  21. Lebègue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79:15409

    Google Scholar 

  22. Frey GL, Reynolds KJ, Friend RH, Cohen H, Feldman Y (2003) Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J Am Chem Soc 125:5998–6007

    Article  CAS  PubMed  Google Scholar 

  23. Ramasubramaniam A (2012) Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86:115409

    Article  CAS  Google Scholar 

  24. Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer and bulk MoS2. Phys Rev B 85:205302

    Article  CAS  Google Scholar 

  25. Li H (2012) Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8:63–67

    Article  CAS  PubMed  Google Scholar 

  26. Xiao D, Liu GB, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Tian Y, Zhao J, Cai Q, Chen Z (2017) Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N– and P–Doping. Electrochim Acta 225:543–550

    Article  CAS  Google Scholar 

  28. Gu H, Huang Y, Zuo L, Fan W, Liu T (2016) Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS2: advanced electrocatalysts for hydrogen evolution reaction. Electrochim Acta 219:604–613

    Article  CAS  Google Scholar 

  29. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Vivek B, Shenoy, Chhowalla M (2013) Conducting MoS2 Nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227

    Article  CAS  PubMed  Google Scholar 

  30. Vattikuti SVP, Byon C, Reddy CV, Venkatesh B, Shim J (2015) Synthesis and structural chracterisation of MoS2 nanosphere and nanosheets using solvothermal method. J Mater Sci 50:5024–5038

    Article  CAS  Google Scholar 

  31. Wang D, Zhang X, Shena Y, Wuab Z (2016) Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts. RSC Adv 6:16656–16661

    Article  CAS  Google Scholar 

  32. Windom BC, Sawyer WG, Hahn DW (2011) A Raman spectroscopic study of MoS2 and MoO3: applications to Tribological systems. Tribol Lett 42:301–310

    Article  CAS  Google Scholar 

  33. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390

    Article  CAS  Google Scholar 

  34. Naveenkumar R, Siva P, Prabu P, Rajendran V (2018) Enhancing the tribological characteristics of the lubricant oil using Ni-promoted MoS2 nanosheets as nano additives. Tribol Int 118:314–328

  35. Panitz JKG, Pope LE, Lyons JE, Staley DJ (1988) The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments. J Vac Sci Technol A 63:1166–1170

    Article  Google Scholar 

  36. Vattikuti SVP, Byon C (2015) Synthesis and characterization of molybdenum disulfide Nanoflowers and Nanosheets: Nanotribology. J Nanomater 2015:1–11

    Google Scholar 

  37. Nagaraju G, Tharamani CN, Chandrappa GT, Livage J (2007) Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate. Nanoscale Res Lett 2:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou X, Wana L, Guo YG (2013) Synthesis of MoS2 nanosheet–graphene nanosheethybrid materials for stable lithium storage. Chem Commun 49:1838–1840

    Article  CAS  Google Scholar 

  39. Maugéa F, Lamotte J, Nesterenko NS, Manoilova O, Tsyganenko AA (2001) FT-IR study of surface properties of unsupported MoS2. Catal Today 70:271–284

    Article  Google Scholar 

  40. Jain A, Tripathi SK (2015) Nanoporous activated carbon from sugra cane waste for supercapacitor application. J Energy Storage 4:121–127

    Article  Google Scholar 

  41. Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 Nanosheets: characterization, properties, and sensing applications. Small 8:2264–2270

    Article  CAS  PubMed  Google Scholar 

  42. Li T, Galli G (2007) Electronic properties of MoS2 nanoparticles. J Phys Chem C 111:16192–16196

    Article  CAS  Google Scholar 

  43. Bott AW (1998) Electrochemistry of semiconductors. Curr Sep 17:87–91

    CAS  Google Scholar 

  44. Bothra P, Pandey M, Pati SK (2016) Size-selective electrocatalytic activity of (Pt)n/MoS2 for oxygen reduction reaction. Catal Sci Technol 6:6389–6395

    Article  CAS  Google Scholar 

  45. Hu Y, Hua DHC (2016) Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for proton exchange membrane fuel cells. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  46. Wu J, Liu M, Chatterjee K, Hackenberg KP, Shen J, Zou X, Yan Y, Lou J, Ajayan PM (2016) Exfoliated 2D transition metal disulfides for enhanced Electrocatalysis of oxygen evolution reaction in acidic medium. Adv Mater Interfaces 3:1500669

    Article  CAS  Google Scholar 

  47. Chia X (2014) Electrochemistry of MoS2 and its activation for electrochemical applications. Nanyang Technological University, Singapore

    Google Scholar 

  48. Ghuman KK, Yadav S, Singh CV (2015) Adsorption and dissociation of H2O on Monolayered MoS2 edges: energetics and mechanism from ab initio simulations. J Phys Chem C 119:6518–6529

    Article  CAS  Google Scholar 

  49. Richey FW, McCloskey BD, Luntz AC (2016) Mg anode corrosion in aqueous electrolytes and implications for mg-air batteries. J Electrochem Soc 163:958–963

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran Venkatachalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakaran Shyma, A., Palanisamy, S., Rajendhran, N. et al. Enhanced discharge capacity of Mg-air battery with addition of water dispersible nano MoS2 sheet in MgCl2 electrolyte. Ionics 25, 583–592 (2019). https://doi.org/10.1007/s11581-018-2691-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2691-3

Keywords

Navigation