Skip to main content
Log in

Fc(COOH)2@ zeolitic imidazolate frameworks-8/three-dimensional macroporous carbon for ascorbic acid sensing

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel ascorbic acid (AA) electrochemical biosensor based on ferrocene dicarboxylic acid (Fc(COOH)2)/zeolitic imidazolate framework-8 (ZIF-8)/three-dimensional (3D) kenaf stem-derived macroporous carbon (3D-KSCs) was proposed for the first time. The formation and properties of Fc(COOH)2/ZIF-8/3D-KCSs nanocomposites were characterized by scanning electron microscopy, Fourier transform-infrared spectroscopy, N2 adsorption/desorption isotherms, X-ray powder diffraction, and energy dispersive X-ray spectroscopy. The results showed that a large number of short rod-like ZIF-8/Fc(COOH)2 was arrayed on the 3D-KSCs surface via a simple one-step hydrothermal method. Fc(COOH)2 was firmly encapsulated into the pores of ZIF-8 simultaneously during the synthesis process of ZIF-8. The Fc(COOH)2/ZIF-8/3D-KCSs nanocomposites were employed to prepare integrated Fc(COOH)2/ZIF-8/3D-KSCs electrode directly for electrochemical AA sensing, and the integrated electrode showed better performance for AA detection than traditional enzyme-based biosensors and nonenzymatic sensors. A wide detection range of 0.06 μM~5.01 mM and a low detection limit of 0.017 μM were obtained with good stability and selectivity. The work also sheds new light on developing ZIF-8-based nanocomposites for electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kingsley MP, Desai PB, Srivastava AK (2015) Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode. J Electroanal Chem 741:71–79

    Article  CAS  Google Scholar 

  2. Wang L, Gong C, Shen Y, Ye W, Xu M, Song Y (2017) A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid. Sensor Actuator B-Chem 242:625–631

    Article  CAS  Google Scholar 

  3. Chen H, Wang X, Wei H (2015) Ratiometric electrochemical sensor for effective and reliable detection of ascorbic acid in living brains. Anal Chem 87:8889–8895

    Article  Google Scholar 

  4. Wang X, Wu M, Tang WR, Zhu Y, Wang LW, Wang QJ, He PG, Fang YZ (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode. J Electroanal Chem 695:10–16

    Article  CAS  Google Scholar 

  5. Yu ZY, Li HJ, Lu JH, Zhang XM, Liu NK, Zhang X (2015) Hydrothermal synthesis of Fe2O3/graphene nanocomposite for selective determination of ascorbic acid in the presence of uric acid. Electrochim Acta 158:264–270

    Article  CAS  Google Scholar 

  6. An Q, Sun CY, Li D, Xu K, Guo J, Wang CC (2013) Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Inter 5:13248–13257

    Article  CAS  Google Scholar 

  7. Bijad M, Karimi-Maleh H, Khalilzadeh MA (2013) Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal Method 6:1639–1647

    Article  Google Scholar 

  8. Li Y, Zhang P, Quyang Z, Zhang M, Lin Z, Li J, Su Z, Wei G (2016) Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane-modified electrode, and super performance for electrochemical sensing. Adv Funct Mater 26:2122–2134

    Article  CAS  Google Scholar 

  9. Gao F, Cai XL, Wang X, Gao C, Liu SL, Gao F, Wang QX (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensor Actuator B-Chem 186:380–387

    Article  CAS  Google Scholar 

  10. Wei G, Xu F, Li Z, Jandt KD (2011) Protein-promoted synthesis of Pt nanoparticles on carbon nanotubes for electrocatalytic nanohybrids with enhanced glucose sensing. J Phys Chem C 115:11453–11460

    Article  CAS  Google Scholar 

  11. Ding J, Sun W, Wei G, Su Z (2015) Cuprous oxide microspheres on graphene nanosheets: an enhanced material for non-enzymatic electrochemical detection of H2O2 and glucose. RSC Adv 5:35338–35345

    Article  CAS  Google Scholar 

  12. Cai WH, Lai T, Du HJ, Ye JS (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensor Actuator B-Chem 193:492–500

    Article  CAS  Google Scholar 

  13. Zhang W, Chai YQ, Yuan R, Han J, Chen SH (2013) Deposited gold nanocrystals enhanced porous PTCA–Cys layer for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensor Actuator B-Chem 183:157–162

    Article  CAS  Google Scholar 

  14. Ghosh T, Sarkar P, Turner APF (2014) A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode. Bioelectrochemistry 102:1–9

    Article  Google Scholar 

  15. Lima FCDA, Calzolari A, Caldas MJ, Iost RM, Crespilho FN, Petrilli HM (2014) Electronic structure of self-assembled monolayers modified with ferrocene on a gold surface: evidence of electron tunneling. J Phys Chem C 118:23111–23116

    Article  CAS  Google Scholar 

  16. Martínez-Montero I, Bruña S, González-Vadillo AM, Cuadrado I (2014) Thiolene chemistry of vinylferrocene: a simple and versatile access route to novel electroactive sulfur- and ferrocene-containing model compounds and polysiloxanes. Macromolecules 47:1301–1315

    Article  Google Scholar 

  17. Sun YY, Peng ZL, Hou R, Liang JH, Zheng JF, Zhou XY, Jin S, Niu ZJ, Mao BW (2014a) Enhancing electron transport in molecular wires by insertion of a ferrocene center. Phys Chem Chem Phys 16:2260–2267

    Article  CAS  Google Scholar 

  18. Zorione H, Rosa OM, Francesc Xavier MOP, Fernando M, Eva B (2014) Electrochemical biosensing of non-electroactive targets using ferrocene-labeled magnetic particles and CNT wiring. Analyst 139:1334–1339

    Article  Google Scholar 

  19. Wang B, Takahashi S, Du X, Anzai J (2014a) Electrochemical biosensors based on ferroceneboronic acid and its derivatives: a review. Biosensor 4:243–256

    Article  CAS  Google Scholar 

  20. Peng HP, Huang ZJ, Zheng YJ, Chen W, Liu AL, Lin XH (2014) A novel nanocomposite matrix based on graphene oxide and ferrocene-branched organically modified sol–gel/chitosan for biosensor application. J Solid State Electrochem 18:1941–1949

    Article  CAS  Google Scholar 

  21. Tseng TC, Chen WH, Chang HY (2015) Fabrication of ferrocene modified microsensors for the sensitive detection of glutamate. IEEE Sensors 2015:1601–1603

  22. Nguyen KL, Dionne ER, Badia A (2015) Redox-controlled ion-pairing association of anionic surfactant to ferrocene-terminated self-assembled monolayers. Langmuir 31:6385–6394

    Article  CAS  Google Scholar 

  23. Cheng HM, Guan LH, Shi ZJ, Zhu ZW, Gu ZN, Li MX (2013) Bi-directional electrocatalytic detection of dopamine at an electrode modified with ferrocene-filled carbon nanotube peapods. Electroanalysis 25:2041–2044

    Article  CAS  Google Scholar 

  24. Liu HL, Lu DK, Li P, Chen Y, Zhou YM, Lu TH (2014) One-step electrodeposition of chitosan/phosphonate iron(III) hybrids film and its pH-controlled switchable electrocatalytic behavior. J Electroanal Chem 717–718:125–130

    Article  Google Scholar 

  25. Ndamanisha JC, Guo LP (2008) Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode. Biosens Bioelectron 23:1680–1685

    Article  CAS  Google Scholar 

  26. Liu ML, Chen Q, Lai CL, Deng JH, Li HT, Yao SZ (2013) A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens Bioelectron 48:75–81

    Article  CAS  Google Scholar 

  27. Chen H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88:5489–5497

    Article  Google Scholar 

  28. Wang L, Zhang QY, Chen SL, Xu FG, Chen SH, Jia JB, Tan HL, Hou HQ, Song YH (2014b) Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem 86:1414–1421

    Article  CAS  Google Scholar 

  29. Sun YB, Yu HJ, Wang L, Ding WB, Ji J, Chen YS, Ren FJ, Tian ZF, Zhao YL, Huang L (2014b) Synthesis of three coordination polymer microspheres and their application in hydrogen storage. J Alloy Compound 585:667–673

    Article  CAS  Google Scholar 

  30. Rösler C, Esken D, Wiktor C, Kobayashi H, Yamamoto T, Matsumura S, Kitagawa H, Fischer RA (2014) Encapsulation of bimetallic nanoparticles into a metal–organic framework: preparation and microstructure characterization of Pd/Au@ZIF-8. Eur J Inorg Chem 2014:5514–5521

    Article  Google Scholar 

  31. Tang Y, Yang S, Zhao Y, You M, Zhang F, He P (2015) The host–guest interaction between cucurbit[7]uril and ferrocenemonocarboxylic acid for electrochemically catalytic determination of glucose. Electroanalysis 27:1387–1393

    Article  CAS  Google Scholar 

  32. Gai PB (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra. J Mater Chem B 1:2742–2749

    Article  CAS  Google Scholar 

  33. Kumar TN, Sivabalan S, Chandrasekaran N, Phani KLN (2014) Ferrocene-functionalized polydopamine as a novel redox matrix for H2O2 oxidation. J Mater Chem B 2:6081–6088

    Article  CAS  Google Scholar 

  34. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  35. Wen D, Liu Y, Yang G, Dong S (2007) Electrochemistry of glucose oxidase immobilized on the carbon nanotube wrapped by polyelectrolyte. Electrochim Acta 52:5312–5317

    Article  CAS  Google Scholar 

  36. Koçak CC, Dursun Z (2013) Simultaneous determination of ascorbic acid, epinephrine and uric acid at over-oxidized poly(p-aminophenol) film modified electrode. J Electroanal Chem 694:94–103

    Article  Google Scholar 

  37. Wu D, Li YY, Yong Z, Wang PP, Qin W, Du B (2014) Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous Fe3O4@graphene sheets. Electrochim Acta 116:244–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21465014, 21665012, and 21465015), Natural Science Foundation of Jiangxi Province (20143ACB21016), The Ministry of Education by the Specialized Research Fund for the Doctoral Program of Higher Education (20133604110002), and the Ground Plan of Science and Technology Projects of Jiangxi Educational Committee (KJLD14023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Electronic supplementary material

.

ESM 1

(DOCX 687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, G., Song, Y., Miao, L. et al. Fc(COOH)2@ zeolitic imidazolate frameworks-8/three-dimensional macroporous carbon for ascorbic acid sensing. Ionics 23, 2377–2385 (2017). https://doi.org/10.1007/s11581-017-2065-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2065-2

Keywords

Navigation