Skip to main content

Advertisement

Log in

Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Activated carbon hollow fibers (ACHFs) with high surface area were prepared from natural ramie fibers (RFs) by one-step activation under different ZnCl2 impregnation concentrations. The results showed that the morphology and pore structure development of ACHFs depend greatly on ZnCl2 concentration because ZnCl2 not only can swell and dissolve cellulose but also can serve as skeleton of newborn pores. It obtained granular activated carbons (ACs) instead of ACHFs when ZnCl2 concentration was over a suitable range. As supercapacitor electrode, the ACHFs possessed the maximum capacity of 287 F g−1 and showed excellent stability with more than 93 % efficiency after 1000 cycles. Besides, ACHFs showed higher electrochemical performance than granular ACs even if their microstructure was similar, indicating the morphology of material is also important to the electrochemical properties. Therefore, supercapacitors using ramie-based ACHFs as electrodes possess high comprehensive properties to serve for the need of backup energy storage and high pulse power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang LL, Guo YP, Zou B, et al (2011) Bioresour Technol 102:1947–1950

    Article  CAS  Google Scholar 

  2. Biswal M, Banerjee A, Deo M, et al (2013) Energ Environ Sci 6:1249–1259

    Article  CAS  Google Scholar 

  3. He XJ, Li RC, Qiu JS, et al (2012) Carbon 50:4911–4921

    Article  CAS  Google Scholar 

  4. Xing BL, Zhang CX, Chen LJ et al (2011) Adv Eng Mater Pts 1–3 194–196:2472–2479

  5. Mallouk KE, Rood MJ (2013) Environ Sci Technol 47:7373–7379

    CAS  Google Scholar 

  6. Travis W, Gadipelli S, Guo ZX (2015) Rsc Adv 5:29558–29562

    Article  CAS  Google Scholar 

  7. Lam E, Luong JHT (2014) ACS Catal 4:3393–3410

    Article  CAS  Google Scholar 

  8. Dutta S, Bhaumik A, Wu KCW (2014) Energ Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  9. Xia YD, Yang ZX, Zhu YQ (2013) J Mater Chem A 1:9365–9381

    Article  CAS  Google Scholar 

  10. Subramanian V, Luo C, Stephan AM, et al (2007) J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  11. Qu WH, Xu YY, Lu AH, et al (2015) Bioresour Technol 189:285–291

    Article  CAS  Google Scholar 

  12. Rufford TE, Hulicova-Jurcakova D, Zhu ZH, et al (2008) Electrochem Commun 10:1594–1597

    Article  CAS  Google Scholar 

  13. Zhai YP, Dou YQ, Zhao DY, et al (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  14. Kim YJ, Lee BJ, Suezaki H, et al (2006) Carbon 44:1592–1595

    Article  CAS  Google Scholar 

  15. Luan YT, Wang L, Guo SE, et al (2015) Rsc Adv 5:42430–42437

    Article  CAS  Google Scholar 

  16. Balathanigaimani MS, Shim WG, Lee MJ, et al (2008) Electrochem Commun 10:868–871

    Article  CAS  Google Scholar 

  17. Wu MB, Ai PP, Tan MH, et al (2014) Chem Eng J 245:166–172

    Article  CAS  Google Scholar 

  18. Li MC, Wu QL, Song KL, et al (2015) ACS Sustainable Chem Eng. 3:821–832

    Article  CAS  Google Scholar 

  19. Li MC, Wu QL, Song KL, et al (2015) ACS Appl. Mater. Interfaces. 7:5006–5016

    Article  CAS  Google Scholar 

  20. Lynd LR, Weimer PJ, van Zyl WH, et al (2002) Microbiol Mol Biol R 66:506–577

    Article  CAS  Google Scholar 

  21. Gazit OM, Katz A (2012) ChemSusChem 5:1542–1548

    Article  CAS  Google Scholar 

  22. Zhao DS, Li H, Zhang J, et al (2012) Carbohyd Polym 87:1490–1494

    Article  CAS  Google Scholar 

  23. Le Moigne N, Navard P (2010) Cellulose 17:31–45

    Article  Google Scholar 

  24. Rutkowski P (2011) Fuel Process Technol 92:517–522

    Article  CAS  Google Scholar 

  25. Henniges U, Kostic M, Borgards A, et al (2011) Biomacromolecules 12:871–879

    Article  CAS  Google Scholar 

  26. Wu WJ, Wang ZG, Jin YC, et al (2014) Biomass Bioenerg 71:357–362

    Article  CAS  Google Scholar 

  27. Caturla F, Molinasabio M, Rodriguezreinoso F (1991) Carbon 29:999–1007

    Article  CAS  Google Scholar 

  28. Rodriguezreinoso F, Molinasabio M (1992) Carbon 30:1111–1118

    Article  CAS  Google Scholar 

  29. Yue ZR, Mangun CL, Economy J (2002) Carbon 40:1181–1191

    Article  CAS  Google Scholar 

  30. De Adhikari A, Oraon R, Tiwari SK, et al (2015) Rsc Adv 5:27347–27355

    Article  Google Scholar 

  31. Lee D, Jung JY, Jung MJ, et al (2015) Chem Eng J 263:62–70

    Article  CAS  Google Scholar 

  32. Farma R, Deraman M, Awitdrus A, et al (2013) Bioresour Technol 132:254–261

    Article  CAS  Google Scholar 

  33. Ma XJ, Zhang F, Zhu JY, et al (2014) Bioresour Technol 164:1–6

    Article  CAS  Google Scholar 

  34. Wan CC, Lu Y, Jiao Y, et al (2015) Carbohyd Polym 118:115–118

    Article  CAS  Google Scholar 

  35. Liu YH, Xue JS, Zheng T, et al (1996) Carbon 34:193–200

    Article  CAS  Google Scholar 

  36. Kumar K, Saxena RK, Kothari R, et al (1997) Carbon 35:1842–1844

    Article  CAS  Google Scholar 

  37. Nahil MA, Williams PT (2012) Biomass Bioenerg 37:142–149

    Article  CAS  Google Scholar 

  38. Guo Y, Shi ZQ, Chen MM, et al (2014) J Power Sources 252:235–243

    Article  CAS  Google Scholar 

  39. Okajima K, Ohta K, Sudoh M (2005) Electrochim Acta 50:2227–2231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (51302264) and the projects of National Science Foundation for Distinguished Young Scholars of China (51125018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Qi or Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Zhao, W., Ma, S. et al. Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber. Ionics 22, 545–553 (2016). https://doi.org/10.1007/s11581-015-1571-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1571-3

Keywords

Navigation