Skip to main content
Log in

Kinetics of superoxide ion in dimethyl sulfoxide containing ionic liquids

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The chemical generation of superoxide ion (O2 •−) by dissolving potassium superoxide was investigated. The chemically generated O2 •− was then used to study the long-term stability of O2 •− in dimethyl sulfoxide (DMSO) containing ionic liquids (ILs) and determine the rate constants based on pseudo 1st- and 2nd-order reactions between the IL and O2 •− generated in DMSO. O2 •− was unstable in DMSO containing [S222][TFSI], [DMIm][MS], [BDMIm][TfO], [EMIm][TFSI], [EMIm][MS], [P14,666][TPTP], [P14,666][TFSI], and all pyridinium-based ILs. In contrast, O2 •− was very stable in DMSO containing [MOPMPip][TFSI], [BMPyrr][DCA], [BMPyrr][TFSI], [BMPyrr][TfO], [HMPyrr][TFSI], [MOEMPip][TPTP], [BMPyrr][TFA], [N112,1O2][TFSI], and [MOEMMor][TFSI]. This shows that these ILs can be used for different applications involving O2 •−. The reaction rate constant, total consumption, and consumption rate of O2 •− were determined. The rate constants of O2 •− in some ILs were found to follow pseudo 1st-order reaction, while in others, pseudo 2nd-order reaction kinetics were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14(12):393–400

    Article  CAS  Google Scholar 

  2. Xiao H, Hu H-S, Schwarz WHE, Li J (2010) Theoretical investigations of geometry, electronic structure and stability of UO6: octahedral uranium hexoxide and its isomers. J Phys Chem A 114(33):8837–8844

    Article  CAS  Google Scholar 

  3. Sawyer DT, Roberts JL Jr (1966) Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold and mercury electrodes. J Electroanal Chem 12(2):90–101

    CAS  Google Scholar 

  4. Sawyer DT (1991) Oxygen chemistry. Oxford University Press, USA

    Google Scholar 

  5. Sawyer DT, Sobkowiak A, Roberts JL (1995) Electrochemistry for chemists, 2nd edn. Wiley, New York

    Google Scholar 

  6. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Tan XM (2011) Electrochemical reduction of dioxygen in bis (trifluoromethylsulfonyl) imide based ionic liquids. J Electroanal Chem 657:150–157

    Article  CAS  Google Scholar 

  7. Hayyan M, Mjalli FS, AlNashef IM, Hashim MA (2012) Chemical and electrochemical generation of superoxide ion in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Int J Electrochem Sci 7:8116–8127

    CAS  Google Scholar 

  8. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661(1):1–16

    Article  CAS  Google Scholar 

  9. Silvester DS, Ward KR, Aldous L, Hardacre C, Compton RG (2008) The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents. J Electroanal Chem 618:53–60

    Article  CAS  Google Scholar 

  10. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72(7):1391–1398

    Article  CAS  Google Scholar 

  11. Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556(1):38–45

    Article  CAS  Google Scholar 

  12. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis. J Am Chem Soc 124(44):12932–12933

    Article  CAS  Google Scholar 

  13. Popov K, Rönkkömäki H, Hannu-Kuure M, Kuokkanen T, Lajunen M, Vendilo A, Oksman P, Lajunen LHJ (2007) Stability of crown-ether complexes with alkali-metal ions in ionic liquid-water mixed solvents. J Incl Phenom Macrocycl Chem 59:377–381

    Article  CAS  Google Scholar 

  14. Betz D, Altmann P, Cokoja M, Herrmann WA, Kühn FE (2011) Recent advances in oxidation catalysis using ionic liquids as solvents. Coord Chem Rev 255(13–14):1518–1540

    Article  CAS  Google Scholar 

  15. Cocalia VA, Holbrey JD, Gutowski KE, Bridges NJ, Rogers RD (2006) Separations of metal ions using ionic liquids: the challenges of multiple mechanisms. Tsinghua Sci Technol 11(2):188–193

    Article  CAS  Google Scholar 

  16. Vayssière P, Chaumont A, Wipff G (2005) Cation extraction by 18-crown-6 to a room-temperature ionic liquid: the effect of solvent humidity investigated by molecular dynamics simulations. PCCP 7(1):124–135

    Article  Google Scholar 

  17. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2002) Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol 36(11):2523–2529. doi:10.1021/es0158004

    Article  CAS  Google Scholar 

  18. Visser AE, Swatloski RP, Reichert WM, Griffin ST, Rogers RD (2000) Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids†. Ind Eng Chem Res 39(10):3596–3604. doi:10.1021/ie000426m

    Article  CAS  Google Scholar 

  19. Chen P-Y, Hussey CL (2005) Electrochemistry of ionophore-coordinated Cs and Sr ions in the tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide ionic liquid. Electrochim Acta 50(12):2533–2540

    Article  CAS  Google Scholar 

  20. Fabiańska A, Ossowski T, Stepnowski P, Stolte S, Thöming J, Siedlecka EM (2012) Electrochemical oxidation of imidazolium-based ionic liquids: the influence of anions. Chem Eng J 198–199:338–345

    Article  Google Scholar 

  21. Zhao H (2006) Innovative applications of ionic liquids as “green” engineering liquids. Chem Eng Commun 193(12):1660–1677

    Article  CAS  Google Scholar 

  22. Machida H, Taguchi R, Sato Y, Florusse L, Peters C, Smith R (2009) Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations. Front Chem Eng China 3(1):12–19. doi:10.1007/s11705-009-0151-3

    Article  CAS  Google Scholar 

  23. Herranz J, Garsuch A, Gasteiger HA (2012) Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li–Air battery electrolytes. J Phys Chem C 116(36):19084–19094. doi:10.1021/jp304277z

    Article  CAS  Google Scholar 

  24. Barnes AS, Rogers EI, Streeter I, Aldous L, Hardacre C, Wildgoose GG, Compton RG (2008) Unusual voltammetry of the reduction of O2 in [C4dmim][N(Tf)2] reveals a strong interaction of O2 •- with the [C4dmim]+ cation. J Phys Chem C 112(35):13709–13715

    Article  CAS  Google Scholar 

  25. Evans RG, Klymenko OV, Saddoughi SA, Hardacre C, Compton RG (2004) Electroreduction of oxygen in a series of room temperature ionic liquids composed of group 15-centered cations and anions. J Phys Chem B 108(23):7878–7886

    Article  CAS  Google Scholar 

  26. Islam MM, Imase T, Okajima T, Takahashi M, Niikura Y, Kawashima N, Nakamura Y, Ohsaka T (2009) Stability of superoxide ion in imidazolium cation-based room-temperature ionic liquids. J Phys Chem A 113(5):912–916

    Article  CAS  Google Scholar 

  27. AlNashef IM, Hashim MA, Mjalli FS, Ali MQ, Hayyan M (2010) A novel method for the synthesis of 2-imidazolones. Tetrahedron Lett 51(15):1976–1978

    Article  CAS  Google Scholar 

  28. Katayama Y, Onodera H, Yamagata M, Miura T (2004) Electrochemical reduction of oxygen in some hydrophobic room-temperature molten salt systems. J Electrochem Soc 151(1):A59–A63

    Article  CAS  Google Scholar 

  29. Navarro-Suárez AM, Hidalgo-Acosta JC, Fadini L, Feliu JM, Suárez-Herrera MF (2011) Electrochemical oxidation of hydrogen on basal plane platinum electrodes in imidazolium ionic liquids. J Phys Chem C 115(22):11147–11155. doi:10.1021/jp201886m

    Article  Google Scholar 

  30. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM (2012) Generation of superoxide ion in pyridinium, morpholinium, ammonium and sulfonium based ionic liquids and the application in the destruction of toxic chlorinated phenols. Ind Eng Chem Res 51(32):10546–10556

    Article  CAS  Google Scholar 

  31. Katayama Y, Sekiguchi K, Yamagata M, Miura T (2005) Electrochemical behavior of oxygen/superoxide ion couple in 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide room-temperature molten salt. J Electrochem Soc 152(8):E247–E250

    Article  CAS  Google Scholar 

  32. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  33. Girault HH (2004) Analytical and physical electrochemistry. EPFL Press

  34. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, AlZahrani SM, Chooi KL (2012) Long term stability of superoxide ion in piperidinium, pyrrolidinium and phosphonium cations-based ionic liquids and its utilization in the destruction of chlorobenzenes. J Electroanal Chem 664:26–32

    Article  CAS  Google Scholar 

  35. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Tan XM, Chooi KL (2010) Generation of superoxide ion in trihexyl (tetradecyl) phosphonium bis (trifluoromethylsulfonyl) imide room temperature ionic liquid. J Appl Sci 10(12):1176–1180

    Article  CAS  Google Scholar 

  36. Hayyan M, Mjalli FS, AlNashef IM, Hashim MA (2012) Stability and kinetics of generated superoxide ion in trifluoromethanesulfonate anion-based ionic liquids. Int J Electrochem Sci 7:9658–9667

    CAS  Google Scholar 

  37. Hayyan M, Mjalli FS, AlNashef IM, Hashim MA (2012) Generation and stability of superoxide ion in tris(pentafluoroethyl)trifluorophosphate anion-based ionic liquids. J Fluor Chem 142:83–89

    Article  CAS  Google Scholar 

  38. Marcinek A, Zielonka J, Gebicki J, Gordon CM, Dunkin IR (2001) Ionic liquids: novel media for characterization of radical ions. J Phys Chem A 105(40):9305–9309

    Article  CAS  Google Scholar 

  39. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM (2013) An investigation of the reaction between 1-butyl-3-methylimidazolium trifluoromethanesulfonate and superoxide ion. J Mol Liq 181:44–50

    Article  CAS  Google Scholar 

  40. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Al-Zahrani SM, Chooi KL (2012) Generation of superoxide ion in 1-butyl-1-methylpyrrolidinium trifluoroacetate and its application in the destruction of chloroethanes. J Mol Liq 167:28–33

    Article  CAS  Google Scholar 

  41. Mohammad M, Khan AY, Subhani MS, Bibi N, Ahmad S, Saleemi S (2001) Kinetics and electrochemical studies on superoxide. Res Chem Intermed 27(3):259–267. doi:10.1163/156856701300356473

    Article  CAS  Google Scholar 

  42. Afanas’ev IB (1989) Superoxide ion: chemistry and biological implications, vol. 1. CRC Press, Boca Raton

    Google Scholar 

  43. Islam MM, Ohsaka T (2008) Roles of ion pairing on electroreduction of dioxygen in imidazolium-cation-based room-temperature ionic liquid. J Phys Chem C 112(4):1269–1275

    Article  CAS  Google Scholar 

  44. Wang Z, Lin P, Baker GA, Stetter J, Zeng X (2011) Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor. Anal Chem 83(18):7066–7073. doi:10.1021/ac201235w

    Article  CAS  Google Scholar 

  45. AlNashef IM (2004) Elctrochemistry of superoxide ion in ionic liquids and its applications to green engineering. Dissertation, University of South Carolina, South Carolina, USA

  46. Song J, Shao Y, Guo W (2001) A new medium system containing sodium dodecyl sulfate suitable for studying superoxide and its reaction in aqueous solution. Electrochem Commun 3(5):239–243

    Article  CAS  Google Scholar 

  47. Chin DH, Chiericato G Jr, Nanni EJ Jr, Sawyer DT (1982) Proton-induced disproportionation of superoxide ion in aprotic media. J Am Chem Soc 104(5):1296–1299

    Article  CAS  Google Scholar 

  48. San Filippo JJ, Chern CI, Valentine JS (1975) Reaction of superoxide with alkyl halides and tosylates. J Org Chem 40(11):1678–1680

    Article  CAS  Google Scholar 

  49. Corey EJ, Nicolaou KC, Shibasaki M, Machida Y, Shiner CS (1975) Superoxide ion as a synthetically useful oxygen nucleophile. Tetrahedron Lett 16(37):3183–3186

    Article  Google Scholar 

  50. Gibian MJ, Ungermann T (1976) Reaction of tert-butyl hydroperoxide anion with dimethyl sulfoxide. On the pathway of the superoxide-alkyl halide reaction. J Org Chem 41(14):2500–2502

    Article  CAS  Google Scholar 

  51. Johnson RA, Nidy EG, Merritt MV (1978) Superoxide chemistry. Reactions of superoxide with alkyl halides and alkyl sulfonate esters. J Am Chem Soc 100(25):7960–7966

    Article  CAS  Google Scholar 

  52. Sawyer DT, Gibian MJ (1979) The chemistry of superoxide ion. Tetrahedron 35(12):1471–1481

    Article  CAS  Google Scholar 

  53. Goolsby AD, Sawyer DT (1968) The electrochemical reduction of superoxide ion and oxidation of hydroxide ion in dimethyl sulfoxide. Anal Chem 40(1):83–86. doi:10.1021/ac60257a022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the University of Malaya HIR-MOHE (D000003-16001) and University of Malaya Centre for Ionic Liquids (UMCiL) for their support to this research. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for participating in funding this work through international research group number IRG14-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maan Hayyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayyan, M., Hashim, M.A. & AlNashef, I.M. Kinetics of superoxide ion in dimethyl sulfoxide containing ionic liquids. Ionics 21, 719–728 (2015). https://doi.org/10.1007/s11581-014-1224-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1224-y

Keywords

Navigation