Skip to main content
Log in

Structure and electrochemical performance of LiCoO2 cathode material in different voltage ranges

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiCoO2 sample prepared by high-temperature solid state calcination shows a typical hexagonal structure with a single phase and fine particle size distribution. The high-voltage electrolyte with additive fluoroethylene carbonate (FEC) has been used. Electrochemical results show that the initial discharge capacities of the prepared LiCoO2 cathode are 157.7, 169.5, 191.0, and 217.5 mAh g−1 in the voltage ranges of 3.0–4.3, 3.0–4.4, 3.0–4.5, and 3.0–4.6 V, respectively. The capacity increases, while the initial coulombic efficiency and capacity retention decrease with increasing the charge cutoff voltage. The capacity retention is only 10.4 % after 200 cycles at 1C rate in the voltage range of 3.0–4.6 V. X-ray diffraction measurements confirm structural changes of the layered material in the different voltage ranges. A phase transition from the O3 to the H1-3 phase can be observed when LiCoO2 is charged above 4.5 V. The AC impedance analysis indicates that the resistances (R (sf+b), R ct) of the prepared LiCoO2 rapidly increase when the cell is charged to higher voltage. The amount of dissolved Co into the electrolyte also greatly increases with increasing the charge cutoff voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Chem Mater 22:587

    Article  CAS  Google Scholar 

  2. Scrosati B, Garche J (2010) J Power Sources 195:2419

    Article  CAS  Google Scholar 

  3. D'Andrea S, Panero S, Reale P, Scrosati B (2000) Ionics 6:127

    Article  Google Scholar 

  4. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783

    Article  CAS  Google Scholar 

  5. Gu X, Liu J-L, Yang J-H, Xiang H-J, Gong X-G, Xia Y-Y (2011) J Phys Chem C 115:12672

    Article  CAS  Google Scholar 

  6. Jo M, Jeong S, Cho J (2010) Electrochem Commun 12:992

    Article  CAS  Google Scholar 

  7. Chebiam RV, Prado F, Manthiram A (2001) Chem Mater 13:2951

    Article  CAS  Google Scholar 

  8. Luo W, Dahn JR (2009) Electrochim Acta 54:4655

    Article  CAS  Google Scholar 

  9. Su L, Jing Y, Zhou Z (2011) Nanoscale 3:3967

    Article  CAS  Google Scholar 

  10. Kraytsberg A, Ein-Eli Y (2012) Adv Energy Mater 2:922

    Article  CAS  Google Scholar 

  11. Takahashi Y, Tode S, Kinoshita A, Fujimoto H, Nakane I, Fujitani S (2008) J Electrochem Soc 155:A537

    Article  CAS  Google Scholar 

  12. Kim YJ, Cho J, Kim T-J, Park B (2003) J Electrochem Soc 150:A1723

    Article  CAS  Google Scholar 

  13. Amatucci GG, Tarascon JM, Klein LC (1996) Solid State lonics 83:167

    Article  CAS  Google Scholar 

  14. Reimers JN, Dahn JR (1992) J Electrochem Soc 139:2091

    Article  CAS  Google Scholar 

  15. Ohzuku T, Ueda A (1994) J Electrochem Soc 141:2972

    Article  CAS  Google Scholar 

  16. Takamatsu D, Mori S, Orikasa Y, Nakatsutsumi T, Koyama Y, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2013) J Electrochem Soc 160:A3054

    Article  CAS  Google Scholar 

  17. Luo W, Li X, Dahn JR (2010) J Electrochem Soc 157:A993

    Article  CAS  Google Scholar 

  18. Van der Ven A, Aydinol MK, Ceder G (1998) Phys Rev B 58:2975

    Article  Google Scholar 

  19. Kramer D, Ceder G (2009) Chem Mater 21:3799

    Article  CAS  Google Scholar 

  20. Moriwake H, Kuwabara A, Fisher CA, Huang R, Hitosugi T, Ikuhara YH, Oki H, Ikuhara Y (2013) Adv Mater 25:618

    Article  CAS  Google Scholar 

  21. Chen Z, Lu Z, Dahn JR (2002) J Electrochem Soc 149:A1604

    Article  CAS  Google Scholar 

  22. Lu X, Sun Y, Jian Z, He X, Gu L, Hu Y-S, Li H, Wang Z, Chen W, Duan X, Chen L, Maier J, Tsukimoto S, Ikuhara Y (2012) Nano Lett 12:6192

    Article  CAS  Google Scholar 

  23. Eom J, Cho J (2008) J Electrochem Soc 155:A201

    Article  CAS  Google Scholar 

  24. Etacheri V, Haik O, Goffer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D (2012) Langmuir 28:965

    Article  CAS  Google Scholar 

  25. Wu B, Ren Y, Mu D, Liu X, Zhao J, Wu F (2012) J Solid State Electrochem 17:811

    Article  Google Scholar 

  26. Xia H, Lu L, Meng YS, Ceder G (2007) J Electrochem Soc 154:A337

    Article  CAS  Google Scholar 

  27. Moss PL, Au G, Plichta EJ, Zheng JP (2009) J Power Sources 189:66

    Article  CAS  Google Scholar 

  28. Rodrigues S, Munichandraiah N, Shukla AK (1999) J Solid State Electrochem 3:397

    Article  CAS  Google Scholar 

  29. Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H-J, Schmidt M (2002) Electrochim Acta 47:4291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program, 2014CB643406) and Major Special Plan of Science and Technology of Hunan Province, China (Grant No.2011FJ1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, Z., Peng, W. et al. Structure and electrochemical performance of LiCoO2 cathode material in different voltage ranges. Ionics 20, 1525–1534 (2014). https://doi.org/10.1007/s11581-014-1098-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1098-z

Keywords

Navigation