Skip to main content
Log in

Preparation and ionic conductivity of composite polymer electrolytes based on hyperbranched star polymer

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hyperbranched star polymer HBPS-(PPEGMA) x was synthesized by atom transfer radical polymerization (ATRP) using hyperbranched polystyrene (HBPS) as macroinitiator and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomer. The structure of the prepared hyperbranched star polymer was characterized by 1H NMR, ATR-FTIR, and GPC. Polymer electrolytes based on HBPS-(PPEGMA) x , lithium salt, and/or nano-TiO2 were prepared. The influences of lithium salt concentration and type, nano-TiO2 content, and size on ionic conductivity of the obtained polymer electrolytes were investigated. The results showed that the low crystallinity of the prepared polymer electrolyte was caused by the interaction between lithium salt and polymer. The addition of TiO2 into HBPS-(PPEGMA) x /LiTFSI improved the ionic conductivity at low temperature. The prepared composite polymer electrolyte showed the highest ionic conductivity of 9 × 10−5 S cm−1 at 30 °C when the content of TiO2 was 15 wt% and the size of TiO2 was 20 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang HW, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41:2382–2394

    Article  CAS  Google Scholar 

  2. Wang H, Zhang X, Gong F, Zhou G, Wang ZS (2012) Novel ester-functionalized solid-state electrolyte for highly efficient all-solid-state dye-sensitized solar cells. Adv Mater 24:121–124

    Article  Google Scholar 

  3. Bruno S, Jusef H, Yang-Kook S (2011) Lithium-ion batteries: a look into the future. Energy Environ Sci 4:3287–3295

    Article  Google Scholar 

  4. Damen L, Hassoun J, Mastragostino M, Scrosati B (2010) Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application. J Power Sources 195:6902–6904

    Article  CAS  Google Scholar 

  5. Rupp B, Schmuck M, Balducci A, Winter M, Kern W (2008) Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid. Eur Polym J 44:2986–2990

    Article  CAS  Google Scholar 

  6. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  CAS  Google Scholar 

  7. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448

    Article  CAS  Google Scholar 

  8. Prosini PP, Passerini S (2002) A lithium battery electrolyte based on gelled polyethylene oxide. Solid State Ionics 146:65–72

    Article  CAS  Google Scholar 

  9. Yue RJ, Niu YH, Wang ZG, Douglas JF, Zhu XQ, Chen EQ (2009) Suppression of crystallization in a plastic crystal electrolyte (SN/LiClO4) by a polymeric additive (polyethylene oxide) for battery applications. Polymer 50:1288–1296

    Article  CAS  Google Scholar 

  10. Liang YH, Wang CC, Chen CY (2008) Synthesis and characterization of a new network polymer electrolyte containing polyether in the main chains and side chains. Eur Polym J 44:2376–2384

    Article  CAS  Google Scholar 

  11. Lee S-I, Schömer M, Peng H, Page KA, Wilms D, Frey H, Soles CL, Yoon DY (2011) Correlations between ion conductivity and polymer dynamics in hyperbranched poly(ethylene oxide) electrolytes for lithium-ion batteries. Chem Mater 23:2685–2688

    Article  CAS  Google Scholar 

  12. Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M (1999) High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32:1541–1548

    Article  CAS  Google Scholar 

  13. Hawker CJ, Chu F, Pomery PJ, Hill DJT (1996) Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials. Macromolecules 29:3831–3838

    Article  CAS  Google Scholar 

  14. Marzantowicza M, Dygas JR, Krok F, Tomaszewska A, Florjańczyk Z, Zygadło-Monikowska E, Lapienis G (2009) Star-branched poly(ethylene oxide) LiN(CF3SO2)2: a promising polymer electrolyte. J Power Sources 194:51–57

    Article  Google Scholar 

  15. Marzantowicz M, Dygas JR, Krok F, Florjańczyk Z, Zygadło-Monikowska E, Lapienis G (2011) Ionic conductivity of electrolytes based on star-branched poly(ethylene oxide) with high concentration of lithium salts. Solid State Ionics 192:137–142

    Article  CAS  Google Scholar 

  16. Li N, Wang L, He XM, Wan CR, Jiang CY (2008) Synthesis of star macromolecules for solid polymer electrolytes. Ionics 14:463–467

    Article  Google Scholar 

  17. Xiao QZ, Li ZH, Gao DS, He T, Zhang HL (2009) Preparation and electrochemical performance of gel polymer electrolytes with a novel star network. J Appl Electrochem 39:247–251

    Article  CAS  Google Scholar 

  18. Zhang S, Lee JY, Hong L (2004) Li+ conducting ‘fuzzy’ poly(ethylene oxide)-SiO2 polymer composite electrolytes. J Power Sources 134:95–102

    Article  CAS  Google Scholar 

  19. Chilaka N, Ghosh S (2012) Solid-state poly(ethylene glycol)-polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte—correlation between morphology and conducting properties. Electrochim Acta 62:362–371

    Article  CAS  Google Scholar 

  20. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources 146:397–401

    Article  CAS  Google Scholar 

  21. Marcinek M, Bac A, Lipka P, Zalewska A, Zukowska G, Borkowska R, Wieczorek W (2000) Effect of filler surface group on ionic interactions in PEG-LiClO4-Al2O3 composite polyether electrolytes. J Phys Chem B 104:11088–11093

    Article  CAS  Google Scholar 

  22. Tambelli CC, Bloise AC, Rosario A, Pereira EC, Magon CJ, Donoso JP (2002) Characterisation of PEO-Al2O3 composite polymer electrolytes. Electrochim Acta 47:1677–1682

    Article  CAS  Google Scholar 

  23. Kim S, Park SJ (2010) Electrochemical behaviors of polymer composite electrolytes containing functionalized nanosize clays. J Nanosci Nanotechno 10:325–328

    Article  CAS  Google Scholar 

  24. Kim D-G, Shim J, Lee JH, Kwon S-J, Baik J-H, Lee J-C (2013) Preparation of solid-state composite electrolytes based on organic/inorganic hybrid star-shaped polymer and PEG-functionalized POSS for all-solid-state lithium battery applications. Polymer 54:5812–5820

    Article  CAS  Google Scholar 

  25. Zhang CH, Li JG, Zhang J, Zhang LY, Li HY (2010) Synthesis and characterization of hyperbranched polystyrene copolymers by atom transfer radical self-condensing vinyl copolymerization. Polym Adv Technol 21:710–719

    Article  CAS  Google Scholar 

  26. Yu BT, Qiu WH, Li FS, Xu GX (2006) The electrochemical characterization of lithium bis(oxalato) borate synthesized by a novel method. Electrochem Solid State Lett 9:A1–A4

    Article  CAS  Google Scholar 

  27. Ren ST, Chang HF, He LJ, Dang XF, Fang YY, Zhang LY, Li HY, Hu YL, Lin Y (2013) Preparation and ionic conductive properties of all-solid polymer electrolytes based on multiarm star block polymers. J Appl Polym Sci 129:1131–1142

    Article  CAS  Google Scholar 

  28. Wu XL, Xin S, Seo HH, Kim J, Guo YG, Lee JS (2011) Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 186:1–6

    Article  CAS  Google Scholar 

  29. Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ (1996) FTIR characterization of PEO+LiN(CF3SO2)(2) electrolytes. J Electroanal Chem 408:113–118

    Article  Google Scholar 

  30. Rey I, Lasségues JC, Grondin J, Servant L (1998) Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim Acta 43:1505–1510

    Article  CAS  Google Scholar 

  31. Wang GX, Yang L, Wang JZ, Liu HK, Dou SX (2005) Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. J Nanosci Nanotechno 5:1135–1140

    Article  CAS  Google Scholar 

  32. Singh PK, Bhattacharya B, Nagarale RK (2010) Effect of nano-TiO2 dispersion on PEO polymer electrolyte property. J Appl Polym Sci 118:2976–2980

    Article  CAS  Google Scholar 

  33. Pan CY, Feng Q, Wang LJ, Zhang Q, Chao M (2007) Morphology and conductivity of in-situ PEO-LiClO4-TiO2 composite polymer electrolyte. J Cent South Univ Technol 14:348–352

    Article  CAS  Google Scholar 

  34. Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89:2815–2822

    Article  CAS  Google Scholar 

  35. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  36. Ramesh V, Mohanty S, Panda BP, Nayak SK (2013) Nucleation effect of surface treated TiO2 on poly(trimethylene terephthalate) (PTT) nanocomposites. J Appl Polym Sci 127:1909–1920

    Article  CAS  Google Scholar 

  37. Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander BE (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)(9)LiCF3SO3:Al2O3 composite polymer electrolyte. J Power Sources 119:409–414

    Article  Google Scholar 

  38. Wang FM, Cheng JH, Hwang BJ, Santhanam R (2012) Combined effects of ceramic filler size and ethylene oxide length on the ionic transport properties of solid polymer electrolyte derivatives of PEGMEMA. J Solid State Electrochem 16:157–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (nos. 51073170 and 50703044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liaoyun Zhang or Huayi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, S., Zheng, T., Zhou, Q. et al. Preparation and ionic conductivity of composite polymer electrolytes based on hyperbranched star polymer. Ionics 20, 1225–1234 (2014). https://doi.org/10.1007/s11581-013-1061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1061-4

Keywords

Navigation