Skip to main content

Advertisement

Log in

Electrochemical capacitance of porous NiO–CeO2 binary oxide synthesized via sol–gel technique for supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nanocrystalline NiO–CeO2 binary oxide as a novel electrode material for ultracapacitor was synthesized via glycol assisted citrate sol–gel method. Unique cubic phases with aggregated crystalline microstructure of NiO–CeO2 mixed oxides were examined by X-ray diffraction and transmission electron microscope. The observed electrochemical measurements further reveal the strong pseudocapacitance features of the mixed oxides at different current density. Binary oxide annealed at 500 °C shows an optimum specific capacitance (C s ) of 305 Fg−1 at the constant current density of 1 Ag−1. The achieved C s value undoubtedly certifies that in combination with NiO the structural stability and redox property of CeO2 have been enhanced. Especially, increasing the calcination temperature binary oxide has shown well reversible redox features which confirm the high chemical and thermal stability of CeO2 and it could be involve in the charge storage process effectively by their strong Ce3+/Ce4+ redox couples. Capacity retention and cyclic stability of the electrode was quite good, only ∼5 % capacity fading was observed after 1,000 cycles. Moreover, binary oxide calcined at 700 °C exhibits a specific capacitance of 167 Fg−1 at the constant current density of 1 Ag−1 which states that presence of CeO2 with NiO have controlled the grain growth and maintains their porous microstructure even at 700 °C. This facilitates to the redox process at both NiO and CeO2 active surfaces at elevated temperature significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gao H, Xiao F, Ching CB, Duan H (2012) ACS Appl Mater Interfaces 4:2801–2810

    Article  CAS  Google Scholar 

  2. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  3. Borgohain R, Li J, Selegue JP, Cheng Y-T (2012) J Phys Chem C 116:15068–15075

    Article  CAS  Google Scholar 

  4. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  5. Hahm MG, Reddy ALM, Cole DP, Rivera M, Vento JA, Nam J et al (2012) Nano Lett 12:5616–5621

    Article  CAS  Google Scholar 

  6. Chi-Chang H, Chen W-C (2004) Electrochim Acta 49:3469–3477

    Article  Google Scholar 

  7. Yuan C, Zhang X, Linhao S, Gao B, Shen L (2009) J Mater Chem 19:5772–5777

    Article  CAS  Google Scholar 

  8. Meher SK, Ranga Rao G (2011) J Phys Chem C 115:15646–15654

    Article  CAS  Google Scholar 

  9. Ghodbane O, Pascal J-L, Favier F (2009) Appl Mater Interfaces 1:1130–1139

    Article  CAS  Google Scholar 

  10. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  11. Liu DY, Reynolds JR (2010) Appl Mater Interfaces 2:3586–3593

    Article  CAS  Google Scholar 

  12. Suppes GM, Deore BA, Freund MS (2008) Langmuir 24:1064–1069

    Article  CAS  Google Scholar 

  13. Liu R, Cho S II, Lee SB (2008) Nanotechnology 19:215710, 8pp

    Article  Google Scholar 

  14. Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) J Phys Chem C 116:12448–12454

    Article  CAS  Google Scholar 

  15. Yan J, Khoo E, Sumboja A, Lee PS (2010) ACS Nano 4:4247–4255

    Article  CAS  Google Scholar 

  16. Kim J-H, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Nano Lett 10:4099–4104

    Article  CAS  Google Scholar 

  17. Liu M-C, Kong L-B, Chao L, Li X-M, Luo Y-C, Kang L (2012) ACS Appl Mater Interfaces 4:4631–4636

    Article  CAS  Google Scholar 

  18. Wei H, Hongbo G, Guo J, Wei S, Guo Z (2013) J Electrochem Soc 160(7):G3038–G3045

    Article  CAS  Google Scholar 

  19. Wei H, Zhu J, Shijie W, Wei S, Guo Z (2013) Polymer 54:1820–1831

    Article  CAS  Google Scholar 

  20. Wei H, Hongbo G, Guo J, Wei S, Liu J, Guo Z (2013) J Phys Chem C 117:13000–13010

    Article  CAS  Google Scholar 

  21. Meher SK, Justin P, Ranga Rao G (2011) ACS Appl Mater Interfaces 3:2063–2073

    Article  CAS  Google Scholar 

  22. Wang X, Sumboja A, Khoo E, Yan C, Lee PS (2012) J Phys Chem C 116:4930–4935

    Article  CAS  Google Scholar 

  23. Beaudrouet E, Le Gal La A, Salle DG (2009) Electrochim Acta 54:1240–1248

    Article  CAS  Google Scholar 

  24. Dong X-C et al (2012) ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  25. Wei H, Yan X, Shijie W, Luo Z, Wei S, Guo Z (2012) J Phys Chem C 116:25052–25064

    Article  CAS  Google Scholar 

  26. Lee M-T, Chang J-K, Hsieh Y-T, Tsai W-T (2008) Journal of Power Sources 185:1550–1556

    Article  CAS  Google Scholar 

  27. Fang D-L, Bing-Cai W, Yan Y, Mao A-Q, Zheng C-H (2012) J Solid State Electrochem 16:135–142

    Article  CAS  Google Scholar 

  28. Liu E-H, Li W, Li J, Meng X-Y, Ding R, Tan S-T (2009) Mater Res Bull 44:1122–1126

    Article  CAS  Google Scholar 

  29. Yang Y, Kim D, Yang M, Schmuki P (2011) Chem Commun 47:7746–7748

    Article  CAS  Google Scholar 

  30. Zec S, Boskovic S, Kaluperovic B, Bogdanov Z, Popovic N (2009) Ceram Int 35:195–198

    Article  CAS  Google Scholar 

  31. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM (2011) Dalton Trans 40:6388–6391

    Article  CAS  Google Scholar 

  32. Wu Z, Li M, Howe J, Meyer HM, Overbury SH (2010) Langmuir 26(21):16595–16606

    Article  CAS  Google Scholar 

  33. Reddy BM, Khan A (2005) Catal Surv Asia 9:155–171

    Article  CAS  Google Scholar 

  34. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J-C (2003) J Phys Chem B 107:5162–5167

    Article  CAS  Google Scholar 

  35. Reddy BM, Lakshmanan P, Khan A (2004) J Phys Chem B 108:16855–16863

    Article  CAS  Google Scholar 

  36. Fang J, Bao H, He B, Wang F, Si D, Jiang Z, Pan Z, Wei S, Huang W (2007) J Phys Chem C 111:19078–19085

    Article  CAS  Google Scholar 

  37. Hartmann P, Brezesinski T, Sann J, Lotnyk A, Eufinger J-P, Kienle L, Janek J (2013) ACS Nano 7:2999–3013

    Article  CAS  Google Scholar 

  38. Singh RN, Sharma T, Singh A, Anindita, Mishra D, Tiwari SK (2008) Electrochim Acta 53:2322–2330

    Article  CAS  Google Scholar 

  39. Solak N, Zinkevich M, Aldinger F (2006) Fuel Cells 06(2):87–92

    Article  CAS  Google Scholar 

  40. Dos Santos ML, Lima RC, Riccardi CS, Tranquilin RL, Bueno PR, Varela JA, Longo E (2008) Mater Lett 62:4509–4511

    Article  Google Scholar 

  41. Jiang H, Sun T, Li C, Ma J (2011) RSC Advances 1:954–957

    Article  CAS  Google Scholar 

  42. Wu YQ, Chen XY, Ji PT, Zhou QQ (2011) Electrochim Acta 56:7517–7522

    Article  CAS  Google Scholar 

  43. Xiao J, Yang S (2011) RSC Advances 1:588–595

    Article  CAS  Google Scholar 

  44. Meher SK, Justin P, Ranga Rao G (2011) Nanoscale 3:683–692

    Article  CAS  Google Scholar 

  45. Meher SK, Justin P, Ranga Rao G (2010) Electrochim Acta 55:8388–8396

    Article  CAS  Google Scholar 

  46. Hu Y-M, Shi T-T, Ni J-S, Jin H-M, Zhu M-Y, Li Y, Bai Q (2012) J Shanghai Jiaotong Univ (Sci) 17(5):513–516

    Article  Google Scholar 

  47. Mao-Sung W, Hsieh H-H (2008) Electrochim Acta 53:3427–3435

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Grant Commission (UGC) India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Padmanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmanathan, N., Selladurai, S. Electrochemical capacitance of porous NiO–CeO2 binary oxide synthesized via sol–gel technique for supercapacitor. Ionics 20, 409–420 (2014). https://doi.org/10.1007/s11581-013-0989-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0989-8

Keywords

Navigation