Skip to main content
Log in

Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nano-Li2FeSiO4/C composites were prepared from three kinds of nano-SiO2 (their particle sizes are 15 ± 5, 30 ± 5, and 50 ± 5 nm, respectively) by a traditional solid-state reaction method. The as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), elementary analyzer, Brunauer–Emmett–Teller (BET) analysis, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. XRD results reveal that nano-Li2FeSiO4 composites fabricated from nano-SiO2 (smaller than 30 nm) have less impurity. SEM results indicate that the particle size of nano-Li2FeSiO4 composites is nearly accord with the particle size of nano-SiO2. BET analysis indicates that the specific surface areas of LFS15, LFS30, and LFS50 are 35.10, 35.27, and 26.68 m2 g, respectively, and the main pore size distribution of LFS15, LFS30, and LFS50 are 1.5, 5.5, and 10 nm, respectively. Electrochemical measurements indicate that nano-Li2FeSiO4 composites prepared from nano-SiO2 of 30 ± 5 nm have the best electrochemical performance among the three samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Islam MS, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong AR, Bruce PG (2011) Silicate cathodes for lithium batteries: alternatives to phosphates. J Mater Chem 21:9811–9818

    Article  CAS  Google Scholar 

  2. Zhang QT, Zhao YL, Su C, Li MY (2011) Nano/Micro Lithium Transitionmetal (Fe, Mn, Co and Ni) Silicate Cathode Materials for Lithium Ion Batteries. Recent Pat Nanotech 5:225–233

    Article  CAS  Google Scholar 

  3. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for li-ion and li-batteries. Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  4. Aravindan V, Karthikeyan K, Ravi S, Amaresh S, Kim WS, Lee YS (2010) Adipic acid assisted sol–gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties. J Mater Chem 20:7340–7343

    Article  CAS  Google Scholar 

  5. Aravindan V, Karthikeyan K, Kang KS, Yoon WS, Kim WS, Lee YS (2011) Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes. J Mater Chem 21:2470–2475

    Article  CAS  Google Scholar 

  6. Lyness C, Delobel B, Armstrong AR, Bruce PG (2007) The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries. Chem Commun 46:4890–4892

    Article  Google Scholar 

  7. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160

    Article  Google Scholar 

  8. Dominko R, Conte DE, Hanzel D, Gaberscek M, Jamnik J (2008) Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sources 178:842–847

    Article  CAS  Google Scholar 

  9. Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133:13031–13035

    Article  CAS  Google Scholar 

  10. Zaghib K, Salah AA, Ravet N, Mauger A, Gendron F, Julien CM (2006) Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J Power Sources 160:1381–1386

    Article  CAS  Google Scholar 

  11. Zhang S, Deng C, Yang S (2009) Preparation of nano-Li2FeSiO4 as cathode material for lithium-ion batteries. Electrochem Solid-State Let 12:A136–A139

    Article  CAS  Google Scholar 

  12. Li LM, Guo HJ, Li XH, Wang ZX, Peng WJ, Xiang KX, Cao X (2009) Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. J Power Sources 189:45–50

    Article  CAS  Google Scholar 

  13. Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol–gel process. Electrochem Solid-State Lett 11:A60–A63

    Article  CAS  Google Scholar 

  14. Fan XY, Li Y, Wang JJ, Gou L, Zhao P, Li DL, Huang L, Sun SG (2010) Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries. J Alloy Compd 493:77–80

    Article  CAS  Google Scholar 

  15. Kam KC, GustafssonT TJO (2011) Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries. Solid State Ionics 192:356–359

    Article  CAS  Google Scholar 

  16. Huang XB, Li X, Wang HY, Pan ZL, Qu MZ, Yu ZL (2010) Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries. Solid State Ionics 181:1451–1455

    Article  CAS  Google Scholar 

  17. Huang XB, Li X, Wang HY, Pan ZL, Qu MZ, Yu ZL (2010) Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochim Acta 55:7362–7366

    Article  CAS  Google Scholar 

  18. Wu XZ, Jiang X, Huo QS, Zhang YX (2012) Facile synthesis of Li2FeSiO4/C composites with triblock copolymer P123 and their application as cathode materials for lithium ion batteries. Electrochim Acta 80:50–55

    Article  CAS  Google Scholar 

  19. Zheng ZM, Wang Y, Zhang A, Zhang TR, Cheng FY, Tao ZL, Chen J (2012) Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sources 198:229–235

    Article  CAS  Google Scholar 

  20. Shao B, Taniguchi I (2012) Synthesis of Li2FeSiO4/C nanocomposite cathodes for lithium batteries by a novel synthesis route and their electrochemical properties. J Power Sources 199:278–286

    Article  CAS  Google Scholar 

  21. Qu L, Fang SH, Yang L, Hirano SI (2012) Li2FeSiO4/C cathode material synthesized by template-assisted sol–gel process with Fe2O3 microsphere. J Power Sources 217:243–247

    Article  CAS  Google Scholar 

  22. Chen WH, Lan M, Zhu D, Wang C, Xue S, Yang CC, Li ZX, Zhang J, Mi LW, Chen WH, Lan M, Zhu D, Wang C, Xue S, Yang CC, Li ZX, Zhang J, Mi LW (2013) Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries. RSC Adv 3:408–412

    Article  CAS  Google Scholar 

  23. Guo HJ, Cao X, Li XQ, Li LM, Li XH, Wang ZX, Peng WJ, Li QH (2010) Optimum synthesis of Li2Fe1−xMnxSiO4/C cathode for lithium ion batteries. Electrochim Acta 55:8036–8042

    Article  CAS  Google Scholar 

  24. Deng C, Zhang S, Yang SY, Fu BL, Ma L (2011) Synthesis and characterization of Li2Fe0.97M0.03SiO4 ( M = Zn2+, Cu2+, Ni2+ )cathode materials for lithium ion batteries. J Power Sources 196:386–392

    Article  CAS  Google Scholar 

  25. Huang XB, Chen HH, Zhao SB, Chen YD, Yang JF, Ren YR, Wang HY, Qu MZ, Pang ZL, Yu ZL (2012) Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries. Electrochim Acta 60:239–243

    Article  CAS  Google Scholar 

  26. Huang XB, Chen HH, Wang HY, Zhou SB, Chen YD, Liu BP, Yang JF, Zhou GN, Jiang QL, Qu MZ, Pang ZL, Yu ZL (2012) High-rate properties of Li1.95FeSiO4/C/CNTs composite as cathode material for lithium-ion batteries. Solid State Ionics 220:18–22

    Article  CAS  Google Scholar 

  27. Xiao L, Guo YL, Qu DY, Deng BH, Liu HX, Tang DP (2013) Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials. J Power Sources 225:286–292

    Article  CAS  Google Scholar 

  28. Yoshida J, Stark M, Holzbock J, Hüsing N, Nakanishi S, Iba H, Abe H, Naito M (2013) Analysis of the size effect of LiMnPO4 particles on the battery properties by using STEM-EELS. J Power Sources 226:122–126

    Article  CAS  Google Scholar 

  29. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders. Electrochem Solid-State Lett 9:A352–A355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Science and Technology Planning Project of Gansu Province (1212RJZA007) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingtang Zhang or Xiaomei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, J., Qing, C., Zhang, Q. et al. Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites. Ionics 20, 23–28 (2014). https://doi.org/10.1007/s11581-013-0965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0965-3

Keywords

Navigation