Skip to main content
Log in

Pulsed electrodeposition of mesoporous cobalt-doped manganese dioxide as supercapacitor electrode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cobalt-doped MnO2, as electrode material for supercapacitor, was synthesized by pulse electrodeposition method. The morphology and structure of the products were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The results show that the crystal structure of the products is γ-type, and the samples reveals a porous texture composed of manganese oxide nanosheets. Cyclic voltammetry (CV), electrochemical impedance spectrometry (EIS), and galvanostatic charge–discharge tests indicate that doping cobalt has great effect on the electrochemical performance of manganese dioxide material. A specific capacitance of 354 F g−1 is obtained when the molar ratio of Mn to Co is 200:10. After 100 charge–discharge cycles in 6 M KOH solution, the specific capacitance stabilized at 333.6 F g−1, exhibiting excellent capacitance retention ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications. Kluwer Academic/plenum, New York

    Google Scholar 

  2. Nazar LF, Goward G, Leroux F, Duncan M et al (2001) Nanostructured materials for energy storage. J Int J Inorg Mater 3:191–200

    Article  CAS  Google Scholar 

  3. Li ZQ, Ding Y, Xiong YJ, Xie Y (2005) Rational growth of various α-MnO2 Hierarchical Structures and β-MnO2 Nanorods via a Homogeneous Catalytic Route. Cryst Growth Des 5:1953–1958

    Article  CAS  Google Scholar 

  4. Toupin M, Brousse T, Belanger D (2004) Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  5. Babakhani B, Ivey DG (2010) Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J Power Sources 195:2110–2117

    Article  CAS  Google Scholar 

  6. Toupin M, Brousse T, Bélanger D (2002) Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  7. Lokhande CD, Dubal DP, Joo OH (2011) Metal oxide thin film based supercapacitors. Current Applied Physics 11:255–270

    Article  Google Scholar 

  8. Kim H, Popov BN (2003) Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors. J Electrochem Soc 150:D56–D62

    Article  CAS  Google Scholar 

  9. Prasad KR, Miura N (2004) Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun 6:1004–1008

    Article  Google Scholar 

  10. Nakayama M, Tanaka A, Sato Y, Tonosaki T, Ogura K (2005) Electrodepositon of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir 21:5907–5913

    Article  CAS  Google Scholar 

  11. Dubal DP, Lokhande CD (2013) Significant improvement in the electrochemical performances of nano-nest like amorphous MnO2 electrodes due to Fe doping. Ceramics International 39:415–423

    Article  CAS  Google Scholar 

  12. Ryota I, Masaharu N (2009) Pseudocapacitive Properties of Vertically Aligned Multilayered Manganese Oxide. Electrochem Solid-State Lett 12:A203–A206

    Article  Google Scholar 

  13. Yang DF (2012) Pulsed laser deposition of cobalt-doped manganese oxide thin film for supercapacitor application. J Power Sources 198:416–422

    Article  CAS  Google Scholar 

  14. Babakhani B, Ivey DG (2011) Investigation of electrochemical behavior of Mn-Co doped oxide electrodes for electrochemical capacitors. Elctrochimica Acta 56:4753–4762

    Article  CAS  Google Scholar 

  15. Ryu WH, Yoon JH, Kwon HS (2012) Morphological control of highly aligned manganese dioxide nanostructure formed by electrodeposition. Mater Lett 79:184–187

    Article  CAS  Google Scholar 

  16. Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104:4463–4492

    Article  CAS  Google Scholar 

  17. Kang JX, Zhao WZ, Zhang GF (2009) Influence of electrodepositon parameters on the deposition rate and microhardness of nanocrystalline Ni coatings. Surf Coat Technol 203:1815–1818

    Article  CAS  Google Scholar 

  18. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  19. Lin YP, Tsai CB, Ho WH (2011) Comparative study on nanostructured MnO2/carbon composites synthesized by spontaneous reduction for supercapacitor application. Mater Chem Phys 130:367–372

    Article  CAS  Google Scholar 

  20. Toupin M, Brousse T (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3187

    Article  CAS  Google Scholar 

  21. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027

    Article  CAS  Google Scholar 

  22. Lei ZB, Shi FH, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. Appl Mater Interfaces 4:1058–1064

    Article  CAS  Google Scholar 

  23. Sharma RK, Zhai L (2009) Multiwall carbon nanotube supported poly(3,4-ethylenedioxythionphene)/manganese oxide nano-composite electrode for super-capacitor. Electrochim Acta 54:7148–7155

    Article  CAS  Google Scholar 

  24. Lang XY, Hirata A, Fujita T, Chen M (2011) Nano metal / oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotech 6:232–236

    Article  CAS  Google Scholar 

  25. Qu QT, Li L, Tian S, Guo WL (2010) A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2 · 0.6H2O. J Power Sources 195:2789–2794

    Article  CAS  Google Scholar 

  26. Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Study on electrochemical performance of activated carbon in aqueous LiSO4, NaSO4 and K2SO4 electrolytes. Electrochem Commun 10:1652–1655

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Natural Science Research Keystone Program of Universities in Hebei Province, China (No. ZH2011228) and the Natural Science Foundation in Hebei Province, China (No. B2012203069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjie Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Wang, W., Zhao, Y. et al. Pulsed electrodeposition of mesoporous cobalt-doped manganese dioxide as supercapacitor electrode material. Ionics 20, 243–249 (2014). https://doi.org/10.1007/s11581-013-0964-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0964-4

Keywords

Navigation